Quantcast

Industry news that matters to you.  Learn more

The Michael J. Fox Foundation Funds Research to Develop Parkinson’s Blood Test

Research being performed by Durin Technologies, Inc., exploring the development of a novel blood test for Parkinson’s disease was recently awarded a second grant from The Michael J. Fox Foundation for Parkinson’s Research.

Study Published Showing Advantages of the PAM50 Gene Signature, the Basis for Prosigna, in Helping to Estimate Risk of Late Distant Recurrence in Postmenopausal Estrogen Receptor Positive Breast Cancer Patients

NanoString Technologies, Inc., (NASDAQ: NSTG) a provider of life science tools for translational research and molecular diagnostic products, recently announced that a study published online in the Journal of the National Cancer Institute demonstrated that the PAM50 gene signature, which is the basis for the Prosigna™ Breast Cancer Prognostic Gene Signature Assay, provides important information to help estimate the risk of late distant recurrence in postmenopausal women with estrogen receptor positive (ER+) early-stage breast cancer. After comparing the PAM50 gene signature, the Oncotype DX® Breast Cancer Assay and the IHC4 score, the authors concluded that the PAM50 gene signature provided the strongest prognostic information regarding risk of distant recurrence five to 10 years following diagnosis in postmenopausal ER+ early-stage breast cancer patients treated with five years of endocrine therapy.

Nodality, Inc. Reports Promising Rheumatoid Arthritis Study Results to Predict Patient Treatment Response to TNF Inhibitors

Nodality, Inc., an innovative biotechnology company advancing discovery, development and use of transformative therapies by revealing functional systems biology, recently announced results of the Company’s comprehensive research study to identify cell markers (biomarkers) of disease activity and treatment success in rheumatoid arthritis (RA) patients. The study findings demonstrated that Nodality’s SCNP technology, which measures functional pathways at the single cell level, can be used to identify biomarkers of responsiveness to treatment with tumor necrosis factor inhibitors (TNFIs). RA affects an estimated two million Americans, and TNFIs constitute the most commonly prescribed therapy. Approximately half of patients respond to treatments such as TNFIs, leaving a substantial unmet need to identify which patients are more likely to respond to current therapies. Optimizing use of currently available therapies could potentially delay tissue damage and progression of disease.

SCNP provides the core technology foundation for Nodality’s programs dedicated to improving clinical medicine by increasing the efficiency of therapeutic R&D programs, enhancing life cycle management for commercialized drugs, and introducing new predictive diagnostics. The study results were featured in an oral presentation titled, Comparison of functional immune signaling profiles in peripheral blood mononuclear cells (PBMC) from rheumatoid arthritis (RA) patients versus healthy donors (HD) using Single Cell Network Profiling (SCNP) (Abstract W7.02.04), at the 15th International Congress of Immunology (ICI) in Milan, Italy, taking place August 22 to 27, 2013. The findings were presented by S. Louis Bridges, Jr., M.D., Ph.D., Marguerite Jones Harbert-Gene V. Ball, MD Professor of Medicine, Director, Division of Clinical Immunology and Rheumatology, University of Alabama School of Medicine.

“Nodality’s research program demonstrates the great promise and potential in gaining a better understanding of disease biology and applying this to the development of prognostic and predictive biomarkers for autoimmune diseases such as RA,” commented Alessandra Cesano, M.D., Ph.D., Chief Medical Officer of Nodality. “I look forward to the final results of this program, one of the most comprehensive of its kind. Our technology, based on immune-biology, can predict which RA patients will respond to specific therapies and reveal the mechanisms of drug resistance, thus informing alternative therapeutic strategies.”

The Nodality research program compares healthy and diseased peripheral blood cells at the single cell level, studying samples obtained through the national Treatment Efficacy and Toxicity in Rheumatoid Arthritis Database and Repository (TETRAD). Nodality anticipates completing its research program and announcing the key findings later this year.

Laura Brege, Nodality’s President and Chief Executive Officer, stated, “ICI has provided an important opportunity to showcase one of our key programs in immunology, further validating our broadly enabling SCNP platform. This platform has led to major collaborations in immunology addressing significant unmet needs among patients, as well as new predictive diagnostic modalities in blood cancers. Ultimately, Nodality’s goal is to accelerate and make more efficient the development of new therapeutic agents for serious diseases affecting large patient populations within immunology and oncology, two areas of continuing significant unmet clinical need.”

Additional program results were featured in a second oral presentation at the ICI Congress in a presentation titled, Functional proteomic interrogation of immune cell crosstalk and the effects of cytokine-targeted inhibitors using Single Cell Network Profiling (SCNP) (Abstract W7.02.03).

Source: Nodality, Inc

MicroRNAs have diagnostic and prognostic potential in urinary bladder cancer

German researchers have identified four biomarkers that correctly determine malignancy of urinary bladder cancers and contribute to the accurate prediction of patient outcomes. Their results are published in the September issue of The Journal of Molecular Diagnostics.

Current prognosticators of bladder cancer, such as tumor grade, stage, size, and number of foci, have limited usefulness for clinicians since they do not accurately reflect clinical outcomes. Therefore, investigators have been searching for new biomarkers with better diagnostic and prognostic capabilities. Focusing on the role of microRNAs (miRNAs), small non-coding RNAs, researchers have identified four miRNAs that together perfectly discriminated between nonmalignant and malignant tissue, including one alone that classified 81% of the samples correctly. Levels of two miRNAs correlated with overall survival time.

Urinary bladder cancer is the fourth most common cancer in the West. According to the National Cancer Institute, it is estimated that in the United States 72,570 individuals will be diagnosed with and 15,210 will die of cancer of the urinary bladder in 2013. At presentation, in 75% of patients the cancers are confined to the mucosa or submucosa (known as non-muscle invasive bladder cancer, NMIBC), whereas in 25% of cases the cancers have already invaded nearby muscle (muscle-invasive bladder cancer, MIBC).

In a series of experiments, investigators analyzed bladder tissue from patients with NMIBC, MIBC, and nonmalignant bladders. After screening 723 miRNAs by microarray, they selected a subset of 15 distinctively deregulated miRNAs for further validation by real-time quantitative PCR. Seven miRNAs were found to be up-regulated, and eight were down-regulated in malignant bladder tissue samples compared to healthy tissue. Four miRNAs were expressed differently in bladder cancers that invaded muscle compared to those that did not. With one exception, no correlation was found between tumor stage and miRNA levels.

When all 15 of the selected miRNAs were considered together, they correctly classified 100% of tissues as either normal or malignant. Further analysis identified four miRNAs that led to 100% correct classification, and one miRNA (miR-130b) that by itself had an 81% accuracy rate. “These results underline the great potential of miRNAs to serve as diagnostic markers, as previously noted for other urological tumors,” says lead investigator Klaus Jung, MD, the Department of Urology at the University Hospital Charité, Berlin and the Berlin Institute for Urologic Research.

The investigators found that tumor grading could not be correlated with overall survival. Yet, they were able to find two miRNAs that significantly correlated with survival: miR-141 and miR-205. miR-141 showed a trend (P=0.08) of being able to stratify patients with muscle-invasive tumors into two groups with different overall survival times. “This finding could be of clinical importance, but these results must be interpreted cautiously,” says Dr. Jung. “However, previously published studies underline the possible prognostic potential of miRNAs to predict progression and disease-specific or overall survival in bladder cancer patients.”

miRNAs are small non-coding RNAs that contain between 19 and 24 nucleotides. miRNAs regulate gene expression by degrading messenger RNAs or impairing their translation. In recent years there has been a growing interest in miRNAs as potential diagnostic and/or prognostic biomarkers in cancers and other diseases.

Study: miRNA Profiling Identifies Candidate miRNAs for Bladder Cancer Diagnosis and Clinical Outcome [The Journal of Molecular Diagnostics]

Source: EurekAlert!

MicroRNAs have Diagnostic and Prognostic Potential in Urinary Bladder Cancer

German researchers have identified four biomarkers that correctly determine malignancy of urinary bladder cancers and contribute to the accurate prediction of patient outcomes. Their results are published in the September issue of The Journal of Molecular Diagnostics.

Current prognosticators of bladder cancer, such as tumor grade, stage, size, and number of foci, have limited usefulness for clinicians since they do not accurately reflect clinical outcomes. Therefore, investigators have been searching for new biomarkers with better diagnostic and prognostic capabilities. Focusing on the role of microRNAs (miRNAs), small non-coding RNAs, researchers have identified four miRNAs that together perfectly discriminated between nonmalignant and malignant tissue, including one alone that classified 81% of the samples correctly. Levels of two miRNAs correlated with overall survival time.

Urinary bladder cancer is the fourth most common cancer in the West. According to the National Cancer Institute, it is estimated that in the United States 72,570 individuals will be diagnosed with and 15,210 will die of cancer of the urinary bladder in 2013. At presentation, in 75% of patients the cancers are confined to the mucosa or submucosa (known as non-muscle invasive bladder cancer, NMIBC), whereas in 25% of cases the cancers have already invaded nearby muscle (muscle-invasive bladder cancer, MIBC).

In a series of experiments, investigators analyzed bladder tissue from patients with NMIBC, MIBC, and nonmalignant bladders. After screening 723 miRNAs by microarray, they selected a subset of 15 distinctively deregulated miRNAs for further validation by real-time quantitative PCR. Seven miRNAs were found to be up-regulated, and eight were down-regulated in malignant bladder tissue samples compared to healthy tissue. Four miRNAs were expressed differently in bladder cancers that invaded muscle compared to those that did not. With one exception, no correlation was found between tumor stage and miRNA levels.

When all 15 of the selected miRNAs were considered together, they correctly classified 100% of tissues as either normal or malignant. Further analysis identified four miRNAs that led to 100% correct classification, and one miRNA (miR-130b) that by itself had an 81% accuracy rate. “These results underline the great potential of miRNAs to serve as diagnostic markers, as previously noted for other urological tumors,” says lead investigator Klaus Jung, MD, the Department of Urology at the University Hospital Charité, Berlin and the Berlin Institute for Urologic Research.

The investigators found that tumor grading could not be correlated with overall survival. Yet, they were able to find two miRNAs that significantly correlated with survival: miR-141 and miR-205. miR-141 showed a trend (P=0.08) of being able to stratify patients with muscle-invasive tumors into two groups with different overall survival times. “This finding could be of clinical importance, but these results must be interpreted cautiously,” says Dr. Jung. “However, previously published studies underline the possible prognostic potential of miRNAs to predict progression and disease-specific or overall survival in bladder cancer patients.”

miRNAs are small non-coding RNAs that contain between 19 and 24 nucleotides. miRNAs regulate gene expression by degrading messenger RNAs or impairing their translation. In recent years there has been a growing interest in miRNAs as potential diagnostic and/or prognostic biomarkers in cancers and other diseases.

Study: miRNA Profiling Identifies Candidate miRNAs for Bladder Cancer Diagnosis and Clinical Outcome [Journal of Molecular Diagnostics]

Source: Elsevier