Quantcast

Industry news that matters to you.  Learn more

KineMed Awarded NIH Contract to Identify Biomarkers for Myocardial Fibrosis

KineMed, Inc. (www.kinemed.com) recently announced that the National Heart, Lung, and Blood Institute (NHLBI), a division of the National Institutes of Health (NIH), awarded the company a Phase I SBIR (Small Business Innovation Research) contract to develop biomarkers for the detection of early myocardial fibrosis. Biomarkers for myocardial fibrosis will guide disease interventions that block the progression of this disease which is risk factor for heart failure and arrhythmias.

COPD Biomarker Qualification Consortium Making Strides with Plasma Fibrinogen as New Biomarker

The COPD Biomarkers Qualification Consortium (CBQC) recently announced at the European Respiratory Society Annual Congress that it has submitted a Qualification Package to the Food and Drug Administration (FDA) for plasma fibrinogen as a new drug development tool. The Qualification Package is the result of progressive discussions between the FDA’s Qualification Review Team and the CBQC. The CBQC looks forward to the results of FDA review while planning for a fall 2013 submission to the European Medicines Agency.

Dr. Ruth Tal-Singer, CBQC co-chair, vice president, Clinical Discovery, Respiratory Area Therapy Unit at GlaxoSmithKline, notes, “To the best of CBQC’s knowledge, fibrinogen is the first clinical biomarker achieving this milestone in the U.S. This is a major milestone for the CBQC, and it highlights the power of working together across multiple companies, academic centers and government organizations to achieve our common objective of improving the way we study novel medicines for patients who need them.”

To support the submission, the CBQC compiled a unique database of subjects from five individual studies, allowing integrated analyses to support two proposed uses as a prognostic biomarker to enrich clinical trial populations with Chronic Obstructive Pulmonary Disease (COPD) subjects at increased risk for all-cause mortality or COPD exacerbations.

A biomarker is a tool that can be used for early detection of a disease, selection of subjects for clinical trials or as an outcome for clinical trials. Fibrinogen, a protein that can be measured in the blood, is a promising biomarker which identifies a group representing 25 to 30 percent of all COPD patients (a COPD subtype).

Dr. Stephen Rennard, CBQC co-chair and Larson Professor of Medicine, University of Nebraska, adds, “COPD is extremely heterogeneous. This complicates development of new treatments, as individual COPD patients may respond differently. Fibrinogen has been submitted to the FDA as a tool that will help address this problem. Specifically, fibrinogen measurement can help identify COPD patients at risk for death or hospitalization, which can allow individuals to participate in studies of novel treatments designed to improve those outcomes.”

The CBQC, organized under the auspices of the COPD Foundation, is a public-private partnership among academic researchers, pharmaceutical companies and government parties and agencies.

John W. Walsh, president and co-founder, COPD Foundation, states, “The Consortium is providing a unique and productive opportunity to bring new drug development tools to the research community, with the ultimate goal of providing new treatments to patients who urgently need them.”

The CBQC Fibrinogen Working Group is composed of the following members:

  • Bruce Miller, industry co-chair, GlaxoSmithKline
  • Ruth Tal-Singer, GlaxoSmithKline
  • Mike Lowings, GlaxoSmithKline
  • Ubaldo Martin, AstraZeneca
  • Jeff Snyder, Boehringer-Ingelheim
  • Kay Tetzlaff, Boehringer-Ingelheim
  • Armin Furtwaengler, Boehringer-Ingelheim
  • Nicholas Locantore, GlaxoSmithKline
  • Nancy Leidy, Evidera
  • Amber Martin, Evidera
  • Jason Simeone, Evidera
  • David Mannino, academic co-chair, University of Kentucky
  • Stephen Rennard, University of Nebraska
  • David Lomas, University College London, U.K.
  • Jorgen Vestbo, University of Southern Denmark, University Hospital Manchester, U.K.
  • Graham Barr, Columbia University
  • Debora Merrill, COPD Foundation

Source: COPD Foundation

Mayo Clinic Study: Blood Biomarker Could Mark Severe Cognitive Decline, Quicker Progression Among Parkinson’s Patients

A genetic mutation, known as GBA, that leads to early onset of Parkinson’s disease and severe cognitive impairment (in about 4 to 7 percent of all patients with the disease) also alters how specific lipids, ceramides and glucosylceramides are metabolized. Mayo Clinic researchers have found that Parkinson’s patients who do not carry the genetic mutation also have higher levels of these lipids in the blood. Further, those who had Parkinson’s and high blood levels were also more likely to have cognitive impairment and dementia. The research was recently published online in the journal PLOS ONE.

The discovery could be an important warning for those with Parkinson’s disease. Parkinson’s is the second most common neurodegenerative disease after Alzheimer’s disease. There is no biomarker to tell who is going to develop the disease — and who is going to develop cognitive impairment after developing Parkinson’s, says Michelle Mielke, Ph.D., a Mayo Clinic researcher and first author of the study.

Cognitive impairment is a frequent symptom in Parkinson’s disease and can be even more debilitating for patients and their caregivers than the characteristic motor symptoms. The early identification of Parkinson’s patients at greatest risk of developing dementia is important for preventing or delaying the onset and progression of cognitive symptoms. Changing these blood lipids could be a way to stop the progression of the disease, says Dr. Mielke.

There is a suggestion this blood lipid marker also could help to predict who will develop Parkinson’s disease and this research is ongoing.

“There is currently no cure for Parkinson’s, but the earlier we catch it — the better chance we have to fight it,” says Dr. Mielke. “It’s particularly important we find a biomarker and identify it in the preclinical phase of the disease, before the onset even begins.”

Dr. Mielke’s lab is researching blood-based biomarkers for Parkinson’s disease because blood tests are less invasive and cheaper than a brain scan or spinal tap — other tools used to research the disease.

This work was supported by grants from the National Institute on Aging (U01 AG37526) and from George P. Mitchell and the late Cynthia W. Mitchell. The DEMPARK study was being funded by an unrestricted grant from Novartis and a grant from the International Parkinson Fonds (Deutschland) gGmbH (IPD). The continuation of the study (LANDSCAPE) is part of the Competence Network Degenerative Dementias (KNDD), which is funded by the German Federal Ministry of Education and Research (project number 01GI1008C)).

Study: Plasma Ceramide and Glucosylceramide Metabolism Is Altered in Sporadic Parkinson’s Disease and Associated with Cognitive Impairment: A Pilot Study [PLOS ONE]

Source: Mayo Clinic

BIDMC Cardiovascular Institute Researchers Will Lead $4 Million NIH Grant to Study MicroRNAs

A cardiovascular research team from Beth Israel Deaconess Medical Center (BIDMC) and Brigham and Women’s Hospital (BWH), led by BIDMC Principal Investigator Saumya Das, MD, PhD, has been awarded a $4 million Common Fund grant from the National Institutes of Health (NIH) as part of a newly formed program on Extracellular RNA Communication. The five-year grant will focus on identifying microRNA biomarkers in heart disease.

Each year, complications from heart attacks (myocardial infarctions) contribute to more than half a million cases of heart failure and 300,000 cases of sudden cardiac arrest, when the heart suddenly stops. Both of these conditions are closely related to a process known as remodeling, in which the structure and function of the heart changes – or remodels — following a heart attack.

“Our goal is to explore the role that microRNAs play in predicting which heart-attack patients will go on to experience complications,” explains Das, an electrophysiologist in BIDMC’s Cardiovascular Institute and co-director of the cardiovascular genetics program within the Outpatient Cardiovascular Clinic.

“Current strategies used to identify the highest risk patients have often been inaccurate,” he adds. “We think that a blood test that makes use of microRNA biomarkers could replace existing strategies and more accurately predict which patients might experience poor outcomes and thereby identify who would most benefit from frequent monitoring and medical care.” Other investigators who are part of the NIH grant, “Plasma miRNA Predictors of Adverse Mechanical and Electrical Remodeling After Myocardial Infarction,” include BIDMC Director of Cardiovascular Research Anthony Rosenzweig, MD, and BWH investigators Raymond Y. Kwong, MD, MPH, and Mark Sabatine, MD, MPH.

microRNAs are one type of extracellular RNA. Once considered nothing more than genomic “junk,” microRNAs have more recently been recognized as playing a key role in cellular functions. Several years ago, scientists began to recognize that these small, noncoding RNAs were not only found inside cells, but could also be found in blood and other tissue fluids.

Using patient plasma samples from extensively characterized patients who have suffered heart attacks, the scientific team will first identify which specific microRNAs are related to poor heart remodeling. They will then use cell culture and animal models of heart disease to further prioritize which microRNAs play a functional role in disease progression. Finally, the investigators will validate these prioritized microRNAs as prognostic markers for poor health outcomes after heart attacks in a large prospective clinical trial.

“Ultimately, we think that miRNA-based tests could replace current tests to predict which patients might be at risk of complications and, therefore, be good candidates to receive an implanted defibrillator,” says Das. “At the same time, we hope to be able to better predict which individuals are at less risk of complications – and thereby spare them unnecessary and costly procedures.”

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC has a network of community partners that includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Source: Beth Israel Deaconess Medical Center

Exosome Diagnostics Enters Collaboration Agreement with Lilly for Exosome Blood-Based Biomarker Discovery

Exosome Diagnostics recently announced it has entered into a collaboration agreement with Eli Lilly and Company (NYSE: LLY) for biomarker discovery and validation using Exosome Diagnostics proprietary EXO50 nucleic acid extraction kit. Under the agreement, Lilly will gain early access to Exosome Diagnostics technology to help identify key gene mutations and expression levels in blood that may be correlated with drug response and disease recurrence. Financial terms were not disclosed.

“Exosome Diagnostics technology may provide a unique opportunity to gain insight into the biology of complex conditions such as cancer and immune disorders,” said Andrew Schade, senior medical director, diagnostic and experimental pathology at Lilly. “Exosome technology enables biofluid molecular sampling and the ability to monitor disease progression in real time. As Lilly explores new ways to pursue patient tailoring, we’ll continue to work with partners to expand our capabilities.”

“Accessing high quality messenger and microRNA directly from frozen patient fluid samples offers a rapid, cost-effective route to identify and validate biomarkers, which may be correlated with drug response and disease recurrence,” said James McCullough, chief executive officer of Exosome Diagnostics. “Lilly has accumulated an extensive and well annotated clinical blood sample biobank that provides a unique opportunity to track target biomarkers through the clinical trial process and help overcome the limitations of stored biopsy tissue.”

Exosomes and other microvesicles are secreted by all cells into all biofluids, and provide a natural biological packaging and distribution mechanism for RNA and DNA. Exosome Diagnostics’ rapid exosome isolation and extraction technology produces high-quality RNA and DNA, including full length mRNA and microRNA, from small volumes of patient biofluids, such as blood (serum and plasma), urine and cerebrospinal fluid, for analysis by standard PCR, array and sequencing instruments. Analysis can be performed on fresh or frozen fluid samples, allowing for broad, flexible and convenient analyses of clinical trial samples, both in real-time and retrospectively, with no special preservation methods required. Exosomes and their protected nucleic acid contents are being investigated in a broad range of diseases including cancer, CNS disorders such as Alzheimer’s and Parkinson’s disease, cardiovascular disease, maternal/fetal medicine, and chronic kidney disease, among others. In July, QIAGEN and Exosome Diagnostics signed an agreement for the creation of High-Performance Biofluid Sample Preparation Kits for Personalized Healthcare Research which covers the exclusive supply of these products upon availability in 2014.

Source: Exosome Diagnostics