Quantcast

Industry news that matters to you.  Learn more

Brain Inflammation Linked to More Severe Parkinson’s Symptoms

Reversing inflammation in the fluid surrounding the brain’s cortex may provide a solution to the complex riddle of Parkinson’s, according to researchers who have found a link between pro-inflammatory biomarkers and the severity of symptoms such as fatigue, depression and anxiety in patients with the chronic disease.

Lena Brundin of Michigan State University’s College of Human Medicine was part of a research team that measured inflammatory markers found in cerebrospinal fluid samples of Parkinson’s patients and members of a control group.

“The degree of neuroinflammation was significantly associated with more severe depression, fatigue, and cognitive impairment even after controlling for factors such as age, gender and disease duration,” said Brundin, an associate professor in the college and a researcher with the Van Andel Institute.

“By investigating associations between inflammatory markers and non-motor symptoms we hope to gain further insight into this area, which in turn could lead to new treatment options.”

The results of the study were published in the journal Brain, Behavior, and Immunity.

Inflammation in the brain long has been suspected to be involved in the development of Parkinson’s disease, specifically in non-motor symptoms such as depression, fatigue and cognitive impairment. Recent research suggests inflammation could drive cell death and that developing new drugs that target this inflammation might slow disease progression.

Parkinson´s disease is the second most common degenerative disorder of the central nervous system; the causes of the disease and its development are not yet fully understood.

“The few previous studies investigating inflammatory markers in the cerebrospinal fluid of Parkinson’s patients have been conducted on comparatively small numbers of subjects, and often without a healthy control group for comparison,” Brundin said.

In the study, 87 Parkinson’s patients were enrolled between 2008 and 2012. For the control group, 37 individuals were recruited. Participants underwent a general physical exam and routine blood screening. Researchers looked at the following markers: C-reactive protein, interleukin-6, tumor necrosis factor-alpha, eotaxin, interferon gamma-induced protein-10, monocyte chemotactic protein-1 and macrophage inflammatory protein 1-β.

The study was carried out in collaboration with researchers from Lund University in Sweden, Skåne University Hospital in Sweden and the Mayo Clinic College of Medicine in Florida.

Study: Cerebrospinal fluid inflammatory markers in Parkinson’s disease – Associations with depression, fatigue, and cognitive impairment [Brain, Behavior, and Immunity]

Source: EurekAlert!

Virus-like Particles Provide Vital Clues About Brain Tumors

“Current wisdom says that cells are closed entities that communicate through the secretion of soluble signalling molecules. Recent findings indicate that cells can exchange more complex information – whole packages of genetic material and signalling proteins. This is an entirely new conception of how cells communicate”, says Dr Mattias Belting, Professor of Oncology at Lund University and senior consultant in oncology at Skåne University Hospital, Lund, Sweden.

Exosomes are small vesicles of only 30 nm. They are produced inside cells and act as “transport vehicles” of genetic material that can be transferred to surrounding cells. Since their first discovery, exosomes have been found in blood, saliva, urine, breast milk and other body fluids.

Mattias Belting’s research group has investigated exosomes released from tumour cells of patients with gliomas.

The tiny exosome particles are delivered from the tumour to healthy cells of the brain and may prime normal tissue for efficient spreading of the tumour. The researchers in Lund have now shown that the aggressiveness of the tumour is reflected in the exosome molecular profile.

“We have succeeded in developing a method for the isolation of exosomes from brain tumour patients through a relatively simple blood test. Our analyses indicate that the content of exosomes mirrors the aggressiveness of the tumour in a unique manner”, says postdoctoral researcher Paulina Kucharzewska.

Exosomes could thus be utilised as biomarkers, i.e. to provide guidance on how the patient should be treated and to monitor treatment response. This possibility is particularly attractive with brain tumours that are not readily accessible for tissue biopsy. However, analysis of exosomes from the blood may also prove important with other tumour types. The value of conventional tumour biopsies is limited by the heterogeneity of tumour tissue, i.e. the tissue specimen may not be fully representative of the biological characteristics of a particular tumour. Exosomes, however, may offer more comprehensive information, according to the researchers.

The second international meeting on exosomes has just opened in Boston, and Mattias Belting and members of his team are there.

“It is very exciting to be part of the emergence of a novel research field. It can be anticipated that the most influential researchers in this area may one day be awarded the Nobel Prize”, says Dr Belting.

Study: Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development

Source: EurekAlert!

Protein Reveals Diabetes Risk Many Years in Advance

When a patient is diagnosed with type 2 diabetes, the disease has usually already progressed over several years and damage to areas such as blood vessels and eyes has already taken place. To find a test that indicates who is at risk at an early stage would be valuable, as it would enable preventive treatment to be put in place. Researchers at Lund University have now identified a promising candidate for a test of this kind. The findings have been published in the journal Cell Metabolism.

Satiation Hormone Could Increase Risk of Diabetes, Heart Attack and Breast Cancer in Women

One of the body’s satiation hormones, neurotensin, could raise women’s risk of suffering one of three common and serious conditions: diabetes, cardiovascular disease and breast cancer. There is also a connection between the hormone and premature death in women, especially from cardiovascular disease. The findings have been presented in a study from Lund University in Sweden, published in the Journal of the American Medical Association.

DiaGenic and GE Healthcare to Develop Blood-based Test for Mild Cognitive Impairment

DiaGenic ASA [OSL:DIAG] recently announced a research agreement to collaborate with GE Healthcare to develop a blood-based test using DiaGenic’s peripheral gene expression profiling in patients with mild cognitive impairment, a disorder associated with risk for Alzheimer’s Disease. The study would be used in conjunction with PET imaging to identify a blood based gene expression signature in these patients. The PET imaging agent, [18F] Flutemetamol, is currently in phase 3 development and is not yet approved by any regulatory authority.