Quantcast

Industry news that matters to you.  Learn more

Guardant Health and Oncotest-Teva Announce Exclusive Distribution and Marketing Partnership for Guardant360 in Israel

Guardant Health, the leader in comprehensive liquid biopsy, announced a distribution and marketing partnership with Oncotest-Teva, [a subsidiary of Teva Pharmaceutical Industries Ltd. in Israel]. The partnership will make Guardant360®, Guardant Health’s groundbreaking, non-invasive genomic sequencing test for patients with advanced cancer, widely available to oncologists and patients in Israel.

BIDMC Researchers Identify Possible Biomarker for Parkinson’s Disease

Although Parkinson’s disease is the second most prevalent neurodegenerative disorder in the U.S., there are no standard clinical tests available to identify this widespread condition. As a result, Parkinson’s disease often goes unrecognized until late in its progression, when the brain’s affected neurons have already been destroyed and telltale motor symptoms such as tremor and rigidity have already appeared.

Genomic Health Announces Presentation of Oncotype DX Studies Reinforcing Value of Tests in Guiding Treatment for Multiple Cancers

Genomic Health, Inc. (Nasdaq: GHDX) recently announced results from four studies highlighting the value of its Oncotype DX® tests for optimizing treatment for patients with breast and colon cancer. Three new decision impact studies – including the company’s first international decision impact study in colon cancer and additional evidence for the Oncotype DX breast cancer test’s significant impact on breast cancer treatment decisions in the United Kingdom (UK) – were among data presented at the European Cancer Congress 2013 in Amsterdam. The results were presented on the heels of the recent National Institute for Health and Care Excellence (NICE) guidance announcement that recommended the use of Oncotype DX “as an option to help clinicians decide whether to prescribe chemotherapy in people with early breast cancer.”

BIDMC Cardiovascular Institute Researchers Will Lead $4 Million NIH Grant to Study MicroRNAs

A cardiovascular research team from Beth Israel Deaconess Medical Center (BIDMC) and Brigham and Women’s Hospital (BWH), led by BIDMC Principal Investigator Saumya Das, MD, PhD, has been awarded a $4 million Common Fund grant from the National Institutes of Health (NIH) as part of a newly formed program on Extracellular RNA Communication. The five-year grant will focus on identifying microRNA biomarkers in heart disease.

Each year, complications from heart attacks (myocardial infarctions) contribute to more than half a million cases of heart failure and 300,000 cases of sudden cardiac arrest, when the heart suddenly stops. Both of these conditions are closely related to a process known as remodeling, in which the structure and function of the heart changes – or remodels — following a heart attack.

“Our goal is to explore the role that microRNAs play in predicting which heart-attack patients will go on to experience complications,” explains Das, an electrophysiologist in BIDMC’s Cardiovascular Institute and co-director of the cardiovascular genetics program within the Outpatient Cardiovascular Clinic.

“Current strategies used to identify the highest risk patients have often been inaccurate,” he adds. “We think that a blood test that makes use of microRNA biomarkers could replace existing strategies and more accurately predict which patients might experience poor outcomes and thereby identify who would most benefit from frequent monitoring and medical care.” Other investigators who are part of the NIH grant, “Plasma miRNA Predictors of Adverse Mechanical and Electrical Remodeling After Myocardial Infarction,” include BIDMC Director of Cardiovascular Research Anthony Rosenzweig, MD, and BWH investigators Raymond Y. Kwong, MD, MPH, and Mark Sabatine, MD, MPH.

microRNAs are one type of extracellular RNA. Once considered nothing more than genomic “junk,” microRNAs have more recently been recognized as playing a key role in cellular functions. Several years ago, scientists began to recognize that these small, noncoding RNAs were not only found inside cells, but could also be found in blood and other tissue fluids.

Using patient plasma samples from extensively characterized patients who have suffered heart attacks, the scientific team will first identify which specific microRNAs are related to poor heart remodeling. They will then use cell culture and animal models of heart disease to further prioritize which microRNAs play a functional role in disease progression. Finally, the investigators will validate these prioritized microRNAs as prognostic markers for poor health outcomes after heart attacks in a large prospective clinical trial.

“Ultimately, we think that miRNA-based tests could replace current tests to predict which patients might be at risk of complications and, therefore, be good candidates to receive an implanted defibrillator,” says Das. “At the same time, we hope to be able to better predict which individuals are at less risk of complications – and thereby spare them unnecessary and costly procedures.”

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC has a network of community partners that includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Source: Beth Israel Deaconess Medical Center

BIDMC Cardiovascular Institute Researchers Will Lead $4 Million NIH Grant to Study MicroRNAs

A cardiovascular research team from Beth Israel Deaconess Medical Center (BIDMC) and Brigham and Women’s Hospital (BWH), led by BIDMC Principal Investigator Saumya Das, MD, PhD, has been awarded a $4 million Common Fund grant from the National Institutes of Health (NIH) as part of a newly formed program on Extracellular RNA Communication. The five-year grant will focus on identifying microRNA biomarkers in heart disease.

Each year, complications from heart attacks (myocardial infarctions) contribute to more than half a million cases of heart failure and 300,000 cases of sudden cardiac arrest, when the heart suddenly stops. Both of these conditions are closely related to a process known as remodeling, in which the structure and function of the heart changes – or remodels — following a heart attack.

“Our goal is to explore the role that microRNAs play in predicting which heart-attack patients will go on to experience complications,” explains Das, an electrophysiologist in BIDMC’s Cardiovascular Institute and co-director of the cardiovascular genetics program within the Outpatient Cardiovascular Clinic.

“Current strategies used to identify the highest risk patients have often been inaccurate,” he adds. “We think that a blood test that makes use of microRNA biomarkers could replace existing strategies and more accurately predict which patients might experience poor outcomes and thereby identify who would most benefit from frequent monitoring and medical care.” Other investigators who are part of the NIH grant, “Plasma miRNA Predictors of Adverse Mechanical and Electrical Remodeling After Myocardial Infarction,” include BIDMC Director of Cardiovascular Research Anthony Rosenzweig, MD, and BWH investigators Raymond Y. Kwong, MD, MPH, and Mark Sabatine, MD, MPH.

microRNAs are one type of extracellular RNA. Once considered nothing more than genomic “junk,” microRNAs have more recently been recognized as playing a key role in cellular functions. Several years ago, scientists began to recognize that these small, noncoding RNAs were not only found inside cells, but could also be found in blood and other tissue fluids.

Using patient plasma samples from extensively characterized patients who have suffered heart attacks, the scientific team will first identify which specific microRNAs are related to poor heart remodeling. They will then use cell culture and animal models of heart disease to further prioritize which microRNAs play a functional role in disease progression. Finally, the investigators will validate these prioritized microRNAs as prognostic markers for poor health outcomes after heart attacks in a large prospective clinical trial.

“Ultimately, we think that miRNA-based tests could replace current tests to predict which patients might be at risk of complications and, therefore, be good candidates to receive an implanted defibrillator,” says Das. “At the same time, we hope to be able to better predict which individuals are at less risk of complications – and thereby spare them unnecessary and costly procedures.”

Source: EurekAlert!