Quantcast

Industry news that matters to you.  Learn more

ImaginAb Enters into Exclusive Licensing Agreement with UCLA for Immune Cell Imaging Agents

ImaginAb, Inc. and the Regents of the University of California, Los Angeles (UCLA) have executed a technology licensing agreement relating to novel immune cell-targeting agents for imaging with Positron Emission Tomography (PET). Inflammation and immune response play a fundamental role in a wide variety of diseases including cancer and autoimmune diseases. Under the agreement, ImaginAb gains exclusive access to novel imaging agents that target specific markers of murine T-cells, enabling a new understanding of response to immunotherapeutic drugs in pre-clinical models.

Biothera Data Strengthens Imprime PGG Biomarker Correlation

Biothera presented data last week demonstrating a threshold presence of anti-beta glucan antibodies (ABA), IgG and IgM are predictive of binding of the company’s cancer immunotherapy Imprime PGG® to neutrophils and monocytes, which can then recognize and kill cancer cells. The presentation was part of the Keystone Symposia on Inflammation, Infection and Cancer in Whistler, British Columbia, Canada.

Study Reveals Much-needed Strategy to Protect Against Deadly Liver Fibrosis

Chronic liver disease is a leading cause of death in the United States, in part because it often causes the formation of harmful scar tissue—a process known as fibrosis. A study published by Cell Press August 15 in the journal Immunity reveals the central role the immune molecule interleukin 33 (IL-33) plays in the formation of liver fibrosis. The findings suggest that drugs targeting this molecule could serve as a new treatment strategy to protect against liver fibrosis.

“Currently, the therapeutic options for liver fibrosis are limited and not curative,” says senior study author Stefan Wirtz of Friedrich-Alexander University Erlangen-Nuremberg. “We identified novel immunological factors that contribute to the development of liver fibrosis, opening up new avenues for the treatment of this serious condition.”

Liver fibrosis refers to the accumulation of harmful deposits of extracellular matrix (ECM) proteins, and it can eventually lead to organ failure. Past studies have suggested that this kind of damage is associated with abnormal immune responses in the liver, but very little was known about the molecules and cells that contribute to fibrosis.

In the new study, Wirtz and his team found that the amount of IL-33 in the blood was higher than normal in patients with liver disease. Following up on this observation, they discovered that injection of IL-33 into mice caused ECM proteins to build up in the liver, whereas mice that were genetically modified to lack IL-33 were largely protected from fibrosis. The researchers went on to identify the immune networks underlying IL-33’s harmful effects and discovered that this molecule activates immune cells called type 2 innate lymphoid cells (ILC2), which had never before been linked to liver disease.

“Our findings reveal IL-33 as a novel biomarker that could potentially lead to early detection of fibrosis in patients, which may be extremely valuable for preventing further damage to the liver,” Wirtz says. “Moreover, the study shows that drugs targeting IL-33 or ILC2 responses could be a promising strategy to protect against fibrosis and chronic liver disease.”

Study: Interleukin-33-Dependent Innate Lymphoid Cells Mediate Hepatic Fibrosis [Immunity]

Source: EurekAlert!

Scientists Identify Biomarker to Predict Immune Response Risk After Stem Cell Transplants

Researchers from Indiana University, the University of Michigan, the Fred Hutchinson Cancer Research Center and the Dana-Farber Cancer Institute have identified and validated a biomarker accessible in blood tests that could be used to predict which stem cell transplant patients are at highest risk for a potentially fatal immune response called graft-versus-host disease.

Although transplant specialists have been able to reduce its impact, graft-versus-host disease remains a leading cause of death among patients who receive a stem cell transplant from another person, known as an allogeneic transplant. Such transplants are used to treat blood and bone marrow cancers such as leukemia and multiple myeloma, often as a last resort. Graft-versus-host disease occurs when immune cells from the transplant see the patient’s body as foreign and attack it.

Approximately 20,000 allogeneic stem cell transplants were performed worldwide in 2012. Thirty to 40 percent of stem cell transplant recipients whose donor is related will experience graft-versus-host disease. The percentage could rise to 60 to 80 percent if the patient and donor are not related.

The researchers found that patients with a high level of a protein named ST2 were more than twice as likely to have graft-versus-host disease that resisted standard treatment with steroids; and nearly four times as likely to die within six months of the transplant. Their findings were reported in the Aug. 8 edition of the New England Journal of Medicine.

“What we found particularly significant was that this marker was a better predictor than the clinical severity of the disease when it was diagnosed,” said Sophie Paczesny, M.D., Ph.D., associate professor of medicine at the IU School of Medicine and senior author of the study.

Thus, patients with low ST2 levels were more likely to respond to treatment regardless of how serious their graft-versus-host disease was graded, while patients with high ST2 levels were less likely to respond to treatment, whether their disease was graded less serious or more serious.

“This blood test, which is currently available to clinicians, will make informed treatment possible as the clinicians will now be able to adjust therapy to the degree of risk rather than treating every patient the same way,” Dr. Paczesny said.

In addition, while the disease most commonly appears about 30 days after the transplant, higher ST2 levels in blood samples taken as early as 14 days after transplant — far before the clinical signs of graft-versus-host disease are apparent — were associated with an increased risk of death from the toxicity of the transplant.

Therefore, the authors noted, early identification of patients who likely won’t respond to standard treatments is important and would allow physicians to consider additional therapies and early intervention. On the other hand, patients with low risk will not need to have additional medicine further suppressing their immune system. But, they cautioned, additional large prospective studies are needed to better define the levels of risk predicted by the ST2 marker.

Study: ST2 as a marker for risk of therapy-resistant graft-versus-host disease and death. [New England Journal of Medicine]

Source: Indiana University School of Medicine

Urine Biomarker Test Can Diagnose as well as Predict Rejection of Transplanted Kidneys

A breakthrough non-invasive test can detect whether transplanted kidneys are in the process of being rejected, as well as identify patients at risk for rejection weeks to months before they show symptoms, according to a study published in The New England Journal of Medicine (NEJM).

By measuring just three genetic molecules in a urine sample, the test accurately diagnoses acute rejection of kidney transplants, the most frequent and serious complication of kidney transplants, says the study’s lead author, Dr. Manikkam Suthanthiran, the Stanton Griffis Distinguished Professor of Medicine at Weill Cornell Medical College and chief of transplantation medicine, nephrology and hypertension at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

“It looks to us that we can actually anticipate rejection of a kidney several weeks before rejection begins to damage the transplant,” Dr. Suthanthiran says.

The test may also help physicians fine-tune the amount of powerful immunosuppressive drugs that organ transplant patients must take for the rest of their lives, says Dr. Suthanthiran, whose laboratory developed what he calls the “three-gene signature” of the health of transplanted kidney organs.

“We have, for the first time, the opportunity to manage transplant patients in a more precise, individualized fashion. This is good news since it moves us from the current one-size-fits-all treatment model to a much more personalized plan,” he says, noting that too little immunosuppression leads to organ rejection and too much can lead to infection or even cancer.

Given the promise of the test first developed in the Suthanthiran laboratory at Weill Cornell and previously reported in NEJM, the National Institutes of Health (NIH) sponsored a multicenter clinical trial of nearly 500 kidney transplant patients at five medical centers, including NewYork-Presbyterian/Weill Cornell Medical Center and NewYork-Presbyterian/Columbia University Medical Center. The successful results of that trial are detailed in the July 4 issue of NEJM.

Such a test is sorely needed to help improve the longevity of kidney transplants and the lives of patients who receive these organs, says study co-author Dr. Darshana Dadhania, associate professor of medicine and medicine in surgery at Weill Cornell Medical College and associate attending physician at NewYork-Presbyterian Hospital.

Dr. Dadhania says that the primary blood test now used to help identify rejection — creatinine, which measures kidney function — is much less specific than the three-gene signature.

“Creatinine can go up for many reasons, including simple dehydration in a patient, and when this happens we then need to do a highly invasive needle-stick biopsy to look at the kidney and determine the cause. Our goal is to provide the most effective care possible for our transplant patients, and that means individualizing their post transplant care,” she says. “Using an innovative biomarker test like this will eliminate unnecessary biopsies and provide a yardstick to measure adequate immunosuppression to keep organs — and our patients — healthy.”

Although a number of researchers have tried to develop blood or urine-based tests to measure genes or proteins that signify kidney organ rejection, Dr. Suthanthiran and his research team were the first to create a gene expression profile urine test — an advance that was reported in NEJM in 2001 and, with an update also in NEJM, in 2005.

The research team measured the levels of messenger RNA (mRNA) molecules produced as genes are being expressed, or activated, to make proteins. To do this, they developed a number of sophisticated tools to measure this genetic material. “We were told we would never be able to isolate good quality mRNA from urine,” he says. “Never say never.”

He and his colleagues found that increased expression of three mRNAs can determine if an organ will be, or is being, rejected. The mRNAs (18S ribosomal (rRNA)–normalized CD3ε mRNA, 18S rRNA–normalized interferon-inducible protein 10 (IP-10) mRNA, and 18S rRNA) indicate that killer T immune cells are being recruited to the kidney in order to destroy what the body has come to recognize as alien tissue.

The signature test consists of adding levels of the three mRNAs in urine into a composite score. Tracked over time, a rising score can indicate heightened immune system activity against a transplanted kidney, Dr. Suthanthiran says. A score that stays the same suggests that the patient is not at risk for rejection.

“We were always looking for the most parsimonious model for an organ rejection biomarker test,” Dr. Suthanthiran says. “Minimizing the number of genes that we test for is just more practical and helps to give us a clearer path towards diagnosis and use in the clinic.”

Physicians can tailor a patient’s use of multiple immunosuppressive drugs by lowering the doses steadily, and monitoring the patient’s composite score over time. Any increase would suggest a somewhat higher dose of therapy is needed to keep the organ safe.

“This is akin to monitoring blood glucose in a patient with diabetes,” Dr. Suthanthiran says. “Because different people have different sensitivity to the two-to-four immunosuppressive drugs they have to take, this test offers us a very personalized approach to managing transplantations.”

Predicting rejection weeks before it happens

The clinical trial began in 2006 with participation from five medical centers — NewYork-Presbyterian/Columbia University Medical Center, the University of Pennsylvania’s Perelman School of Medicine, the Northwestern University Feinberg School of Medicine, the University of Wisconsin School of Medicine and Public Health and NewYork-Presbyterian/Weill Cornell Medical Center, which contributed 122 of the total 485 kidney transplant patients.

The gene-expression studies were led by Dr. Suthanthiran with his laboratory serving as the Gene Expression Monitoring (GEM) core and the clinical trial was led by Dr. Abraham Shaked, director of the PENN Transplant Institute at the Perelman School, on behalf of the Clinical Trials in Organ Transplants 04 (CTOT-04) Study Investigators. The GEM core was blinded to the clinical status of the patients including their biopsy results and the data collection and analysis were performed by an independent statistical center sponsored by NIH.

Researchers collected 4,300 urine specimens during the first year of transplantation, starting at day three post-transplantation. The urine samples were shipped to the GEM core at Weill Cornell Medical College, where analysis of the urine revealed that the three gene-based biomarkers signature could distinguish kidney recipients with biopsy confirmed rejection from those whose biopsies did not show signs of rejection or who did not undergo a biopsy because there was no clinical sign of rejection.

The researchers used the signature to derive a composite score and identify a threshold value indicative of rejection. This score accurately detected transplant rejection with a low occurrence of false-positive and false-negative results. “It is about 85 percent accurate, which is much higher than the creatinine test used today,” Dr. Suthanthiran says. Investigators then validated the diagnostic signature by obtaining similar results when they tested a set of urine samples collected in a separate CTOT clinical trial.

Dr. Suthanthiran anticipates conducting another NIH-funded clinical trial to test whether the signature test can be used to personalize individual immunosuppressive therapy. He says that NIH is also interested in submitting the test to the federal Food and Drug Administration for approval.

These studies have provided enough information that many medical centers can test their own kidney transplant patients for rejection using the publicly-available formula for the biomarker test. Dr. Suthanthiran also is working to develop a way for patients to submit samples via mail for biomarker testing, and avoid an office visit. The study was supported by NIH grants UO1AI63589 and R37AI051652, the Qatar National Research Foundation (NPRP 08-503-3-111) and by a Clinical and Translational Science Center Award (UL1TR000457, to Weill Cornell Medical College).

Study: Urinary-Cell mRNA Profile and Acute Cellular Rejection in Kidney Allografts

Source: Weill Cornell Medical College