Quantcast

Industry news that matters to you.  Learn more

The Michael J. Fox Foundation Funds Research to Develop Parkinson’s Blood Test

Research being performed by Durin Technologies, Inc., exploring the development of a novel blood test for Parkinson’s disease was recently awarded a second grant from The Michael J. Fox Foundation for Parkinson’s Research.

KineMed Awarded NIH Contract to Identify Biomarkers for Myocardial Fibrosis

KineMed, Inc. (www.kinemed.com) recently announced that the National Heart, Lung, and Blood Institute (NHLBI), a division of the National Institutes of Health (NIH), awarded the company a Phase I SBIR (Small Business Innovation Research) contract to develop biomarkers for the detection of early myocardial fibrosis. Biomarkers for myocardial fibrosis will guide disease interventions that block the progression of this disease which is risk factor for heart failure and arrhythmias.

Mayo Clinic Researchers Identify Biomarker for Smoker’s Lung Cancer

Mayo Clinic researchers have shown that a specific protein pair may be a successful prognostic biomarker for identifying smoking-related lung cancers. The protein — ASCL1 — is associated with increased expression of the RET oncogene, a particular cancer-causing gene called RET. The findings appear in the online issue of the journal Oncogene.

“This is exciting because we’ve found what we believe to be a ‘drugable target’ here,” says George Vasmatzis, Ph.D., a Mayo Clinic molecular medicine researcher and senior author on the study. “It’s a clear biomarker for aggressive adenocarcinomas. These are the fast-growing cancer cells found in smokers’ lungs.”

ASCL1 is known to control neuroendocrine cell development and was previously linked to regulation of thyroid and small cell lung cancer development, but not smoking-related lung cancer. The research also showed that patients with ASCL1 tumors with high levels of the RET oncogene protein did not survive as long as ASCL1 patients with low levels of RET.

When researchers blocked the ASCL1 protein in lung cancer cell lines expressing both genes, the level of RET decreased and tumor growth slowed. This leads researchers to believe this mechanism will be a promising target for potential drugs and a strong candidate for clinical trials.

The co-authors of the study include Farhad Kosari, Ph.D.; Cristiane Ida, M.D.; Marie Christine Aubry, M.D.; Lin Yang, Ph.D.; Irina Kovtun, Ph.D.; Janet Schaefer Klein; Yan Li, M.D.; Sibel Erdogan; Sandra Tomaszek, M.D.; Stephen Murphy, Ph.D.; Lynn Bolette; Christopher Kolbert; Ping Yang, M.D., Ph.D.; and Dennis Wigle, M.D., Ph.D., all of Mayo Clinic.

The research was supported by a Waterman Biomarker Discovery grant and by the Mayo Clinic Center for Individualized Medicine.

Study: ASCL1 and RET expression defines a clinically relevant subgroup of lung adenocarcinoma characterized by neuroendocrine differentiation [Oncogene]

Source: Mayo Clinic

Mayo Clinic Study: Blood Biomarker Could Mark Severe Cognitive Decline, Quicker Progression Among Parkinson’s Patients

A genetic mutation, known as GBA, that leads to early onset of Parkinson’s disease and severe cognitive impairment (in about 4 to 7 percent of all patients with the disease) also alters how specific lipids, ceramides and glucosylceramides are metabolized. Mayo Clinic researchers have found that Parkinson’s patients who do not carry the genetic mutation also have higher levels of these lipids in the blood. Further, those who had Parkinson’s and high blood levels were also more likely to have cognitive impairment and dementia. The research was recently published online in the journal PLOS ONE.

The discovery could be an important warning for those with Parkinson’s disease. Parkinson’s is the second most common neurodegenerative disease after Alzheimer’s disease. There is no biomarker to tell who is going to develop the disease — and who is going to develop cognitive impairment after developing Parkinson’s, says Michelle Mielke, Ph.D., a Mayo Clinic researcher and first author of the study.

Cognitive impairment is a frequent symptom in Parkinson’s disease and can be even more debilitating for patients and their caregivers than the characteristic motor symptoms. The early identification of Parkinson’s patients at greatest risk of developing dementia is important for preventing or delaying the onset and progression of cognitive symptoms. Changing these blood lipids could be a way to stop the progression of the disease, says Dr. Mielke.

There is a suggestion this blood lipid marker also could help to predict who will develop Parkinson’s disease and this research is ongoing.

“There is currently no cure for Parkinson’s, but the earlier we catch it — the better chance we have to fight it,” says Dr. Mielke. “It’s particularly important we find a biomarker and identify it in the preclinical phase of the disease, before the onset even begins.”

Dr. Mielke’s lab is researching blood-based biomarkers for Parkinson’s disease because blood tests are less invasive and cheaper than a brain scan or spinal tap — other tools used to research the disease.

This work was supported by grants from the National Institute on Aging (U01 AG37526) and from George P. Mitchell and the late Cynthia W. Mitchell. The DEMPARK study was being funded by an unrestricted grant from Novartis and a grant from the International Parkinson Fonds (Deutschland) gGmbH (IPD). The continuation of the study (LANDSCAPE) is part of the Competence Network Degenerative Dementias (KNDD), which is funded by the German Federal Ministry of Education and Research (project number 01GI1008C)).

Study: Plasma Ceramide and Glucosylceramide Metabolism Is Altered in Sporadic Parkinson’s Disease and Associated with Cognitive Impairment: A Pilot Study [PLOS ONE]

Source: Mayo Clinic

BIDMC Cardiovascular Institute Researchers Will Lead $4 Million NIH Grant to Study MicroRNAs

A cardiovascular research team from Beth Israel Deaconess Medical Center (BIDMC) and Brigham and Women’s Hospital (BWH), led by BIDMC Principal Investigator Saumya Das, MD, PhD, has been awarded a $4 million Common Fund grant from the National Institutes of Health (NIH) as part of a newly formed program on Extracellular RNA Communication. The five-year grant will focus on identifying microRNA biomarkers in heart disease.

Each year, complications from heart attacks (myocardial infarctions) contribute to more than half a million cases of heart failure and 300,000 cases of sudden cardiac arrest, when the heart suddenly stops. Both of these conditions are closely related to a process known as remodeling, in which the structure and function of the heart changes – or remodels — following a heart attack.

“Our goal is to explore the role that microRNAs play in predicting which heart-attack patients will go on to experience complications,” explains Das, an electrophysiologist in BIDMC’s Cardiovascular Institute and co-director of the cardiovascular genetics program within the Outpatient Cardiovascular Clinic.

“Current strategies used to identify the highest risk patients have often been inaccurate,” he adds. “We think that a blood test that makes use of microRNA biomarkers could replace existing strategies and more accurately predict which patients might experience poor outcomes and thereby identify who would most benefit from frequent monitoring and medical care.” Other investigators who are part of the NIH grant, “Plasma miRNA Predictors of Adverse Mechanical and Electrical Remodeling After Myocardial Infarction,” include BIDMC Director of Cardiovascular Research Anthony Rosenzweig, MD, and BWH investigators Raymond Y. Kwong, MD, MPH, and Mark Sabatine, MD, MPH.

microRNAs are one type of extracellular RNA. Once considered nothing more than genomic “junk,” microRNAs have more recently been recognized as playing a key role in cellular functions. Several years ago, scientists began to recognize that these small, noncoding RNAs were not only found inside cells, but could also be found in blood and other tissue fluids.

Using patient plasma samples from extensively characterized patients who have suffered heart attacks, the scientific team will first identify which specific microRNAs are related to poor heart remodeling. They will then use cell culture and animal models of heart disease to further prioritize which microRNAs play a functional role in disease progression. Finally, the investigators will validate these prioritized microRNAs as prognostic markers for poor health outcomes after heart attacks in a large prospective clinical trial.

“Ultimately, we think that miRNA-based tests could replace current tests to predict which patients might be at risk of complications and, therefore, be good candidates to receive an implanted defibrillator,” says Das. “At the same time, we hope to be able to better predict which individuals are at less risk of complications – and thereby spare them unnecessary and costly procedures.”

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC has a network of community partners that includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Source: Beth Israel Deaconess Medical Center