Quantcast

Industry news that matters to you.  Learn more

Novel Use of Pressure BioSciences’ Patented PCT Platform Offers New Insights into Protein Structure and Function, New Tool for Biomarker Discovery and Rational Drug Design

Last month, Pressure BioSciences, Inc. (OTCQB: PBIO) (“PBI” and the “Company”) announced that data supporting important advantages of PBI’s powerful and enabling Pressure Cycling Technology (“PCT”) platform were presented at the 27th Annual Symposium of the Protein Society held July 20-23, 2013 in Boston, Massachusetts.

The use of highly sophisticated analytical instrument systems by research scientists worldwide has resulted in a greater understanding of complex biological molecules, including proteins – the “building blocks of life.” One such instrument system, Electron Paramagnetic Resonance (“EPR”) spectroscopy, has been shown to provide key information on the structure, flexibility, and function of proteins. This information is crucial to the development of new and better diagnostics, therapeutics, and vaccines.

At this year’s annual Protein Society symposium, researchers from UCLA reported on the development of an improved EPR system based on the use of high pressure. This novel system combined (for the first time ever) two cutting-edge EPR methods: site directed spin labeling (“SDSL”) and double electron-electron resonance (“DEER”). This strategy allowed the investigation of dynamic events in proteins that would be difficult or even impossible to study by conventional EPR technology.

Dr. Wayne L. Hubbell, Distinguished Professor of Chemistry and Biochemistry and Jules Stein Professor of Ophthalmology at UCLA, and senior author of the study, commented: “The study of proteins under pressure by EPR and other spectroscopic techniques, such as Nuclear Magnetic Resonance (“NMR”), has the potential to greatly improve our understanding of the structure and function of proteins. This information could subsequently provide new insights into such important areas as biomarker discovery and rational drug design, and play an important role in the discovery process that lies ahead in the exciting field of protein science.”

Richard T. Schumacher, President and CEO of PBI, said: “We believe these and other data reported by researchers using pressure-based EPR and NMR systems strongly indicate that PCT can enhance the recovery, detection, and measurement of proteins from a wide variety of samples. In turn, this information has the potential to help accelerate the design and manufacture of new and better diagnostics, therapeutics, and vaccines. We further believe that the advantages of pressure-based spectroscopic methods are just now beginning to be realized by scientists, and that as the body of data continues to grow from high pressure-based spectroscopic studies, that PBI has the potential to become a major provider of high pressure equipment into the exciting and growing spectroscopy area.”

Source: Pressure BioSciences

Kinexus Launches DrugKiNET KnowledgeBase with 105,000 Experimentally Tested Protein Kinase Drug Interactions

Kinexus Bioinformatics Corporation, a world-leader in the study of molecular intelligence systems, announced the launch of its DrugKiNET KnowledgeBase (www.drugkinet.ca) for the identification and development of drug candidates that potently and selectively inhibit human protein kinases. This open-access website features quantitative data on the effects of over 800 chemical compounds on more than 400 protein kinases following careful annotation of hundreds of experiments documented in the scientific literature. This data was then used to train two different proprietary algorithms to predict the inhibitory effects of 550 of these compounds on 500 human protein kinases. This information can guide biomedical researchers in the discovery of new therapeutic targets for existing drugs, and aid in the design of promising new drugs.

At least 538 different protein kinases regulate each other and another approximately 21,500 diverse protein targets to coordinate all of the operations in living cells through complex molecular communications and control networks. Kinases are well recognized by the pharmaceutical and biotech industry as highly productive targets for drug development with applications for cancer, diabetes, Alzheimer’s disease and many other diseases. In fact, over 400 human disease have been linked to genetic mutations in the genes that encode protein kinases or the direct actions of environmental toxins that target protein kinases. Over the last decade, more than two dozen kinase inhibitors have already been approved for clinical use, primarily for cancer treatment. By targeting inappropriately active kinases, these small molecule drugs essentially re-program cancer cells for their demise.

Over the last year, Kinexus and their collaborators in the Mathematics of Information Technology and Complex Systems (MITACS) groups at the University of British Columbia and Simon Fraser University have worked to identify the specific parts of different protein kinases that are critical for recognition by each of 550 different compounds that have been experimentally shown to inhibit one or more kinases. These parts, termed Inhibitor Determining Residues (IDR’s), may be involved in recognizing and binding drugs, and their identification within DrugKiNET can facilitate further optimization of even more potent and specific protein kinase inhibitory drugs. Previously, Kinexus and its partners identified Substrate Determining Residues (SDR’s) in protein kinases that were important for recognition of their protein targets and deposited this information in their open-access PhosphoNET Knowledgebase (www.phosphonet.ca).

“We believe that DrugKiNET is an extremely unique and powerful resource for the biomedical research community,” commented Dr. Steven Pelech, President and Chief Scientific Officer of Kinexus and a professor in the Department of Medicine at the University of British Columbia. “Over a third of all pharmaceutical drug development is presently focused on protein kinase inhibitory drugs, but we expect this to increase even more, since the vast majority of protein kinases have yet to be pursued as drug targets, and definition of the precise roles of different kinases in non-cancer-related diseases is still in its infancy.”

Dr. Pelech added, “We are excited by the prospect that our algorithms can define new protein kinase targets for existing drugs, and that they can identify in the genes that encode protein kinases the specific mutations that may alter their sensitivities to these drugs. As Kinexus has the capability of testing the effects of drug candidates on over 350 different purified protein kinases in-house, we also have the ability to experimentally validate many of our drug predictions for our clients.”

Kinexus is a private, biotechnology company engaged in the research and development of innovative methods to map, track and manipulate cellular communication networks. The application of this knowledge positions Kinexus and its clients in drug development, rational drug design, disease diagnosis and personalized therapies to improve human health. Kinexus currently has agreements with over 1700 research laboratories in companies, universities, government institutions and hospitals in over 35 different countries. To learn more about the diverse proteomics and bioinformatics services offered by Kinexus, please visit www.kinexus.ca or call toll-free at 1-866-KINEXUS.

Source: Kinexus Bioinformatics Corporation

Ignyta Announces Acquisition of Actagene Oncology and Entry into Oncology Personalized Medicine

Ignyta, Inc. recently announced that it has acquired Actagene Oncology, Inc., effective May 20, 2013. Actagene was a San Diego based privately held biotechnology company founded in February 2013 that was developing personalized medicines for high unmet need cancer indications, based on cancer genome mining and sequencing.

Molecular Response Launches TargetXTM Platform for Rapid Discovery & Validation of New Oncology Targets

Molecular Response recently announced the launch of its TargetX platform for rapid discovery and validation of new oncology targets. The program provides partners with access to the world’s largest bank of living tumor specimens, matched genomic database, and in vivo/ex vivo patient derived tumor models for validation. The integrated platform enables investigators to do in days what used to take months.

Target discovery and validation in oncology has largely relied on molecular and functional studies performed in cell lines. Recent advances in genomics have now created large databases based on well-characterized tumor tissue, which has enabled direct investigation of patient tumors for novel targets. Following these discoveries, it is routine to perform functional studies in cell line-based systems; however, it is often challenging to find a relevant cell line model and if found, there are often numerous factors which confound biology when using historical cell lines for functional studies. The result can be a process which takes considerable time and does not readily translate to clinical relevance.

“TargetX is the largest scale genomic database matched to living patient-derived tumor models,” said Dr. Mohit Trikha, CSO of Triphase Accelerator and founder of Drug Design Corp. “We plan to access it for our drug pipeline development and biomarker identification; having everything in one place allows us to do in days what used to take months. Additionally, we can now work with living patient derived tumor samples rather than cultured cell lines.”

The platform relies on Molecular Response’s proprietary bank of more than 144,000 patient derived tumor cells, of which nearly 400 tumors have been genomically characterized and databased for target discovery studies. The database is growing, but currently features the following cancer indications: colon carcinoma, NSCLC, melanoma, ovarian carcinoma, prostate cancer and Non-Hodgkins Lymphoma. Upon discovery of a novel target, tumors of interest are immediately implanted into mice to perform functional studies in direct patient derived models–either in vivo or ex vivo. Molecular Response currently has more than 60 such patient derived xenograft models established for in vivo studies.

“We continue to focus on the use of patient derived models, both in vivo and ex vivo, for advancing oncology drug development,” said Thomas Broudy, CSO of Molecular Response. “Everybody would like to perform studies in the patient derived tumor setting starting as early as possible, but without the resource to do so, it’s nearly impossible. TargetX now enables you to do that.”

Molecular Response presented results from the TargetX platform at the AACR meeting; the company has identified a novel kinase target for potential therapeutic development. They investigated prevalence of target overexpression across 7 cancer indications, and identified melanoma as a clinical indication of high interest. Growth characteristics from patient tumors featuring high kinase gene expression vs. low expression were examined to help characterize the role of this target in oncology disease progression. Functional studies in these patient derived models to further validate the novel kinase are ongoing, as is a small molecule and antibody-based therapeutic development program.

Source: Business Wire

New Data Indicate Pressure BioSciences’ Novel Technology Platform Offers Great Promise to the Areas of Biomarker Discovery and Drug Development

Pressure BioSciences, Inc. (Nasdaq:PBIO) (“PBI” and the “Company”) announced recently that data supporting important advantages of PBI’s powerful and enabling Pressure Cycling Technology (“PCT”) Platform were presented last week at the 56th Annual Meeting of the Biophysical Society in San Diego, CA and this week at the 8th Annual US Human Proteomic Organization (“HUPO”) Conference in San Francisco, CA.