Quantcast

Industry news that matters to you.  Learn more

Researchers Identify Splice Variant of Breast Cancer Gene that Can Mask Risk of Recurrence

Agendia, a leader in molecular cancer diagnostics, recently announced that researchers have identified a subset of breast cancer patients whose standard biomarker tests may incorrectly classify patients as low risk and benefitting from endocrine therapy. A study published last month in Breast Cancer Research and Treatment concluded that this subset of breast cancer patients may actually be at “high risk” of disease progression and benefit more from chemotherapy than endocrine therapy.

The researchers found that 2 percent of breast cancer patients tested, who were identified as estrogen receptor positive (ER+) and therefore potential candidates to benefit from endocrine therapy, actually had a variant of the estrogen receptor called “delta Exon 7 deletion”. This variant is missed by standard receptor testing and reported as receptor positive, when in fact the variant protein inhibits the normal estrogen signal in the cell that may prevent the patient from benefitting from routine endocrine therapy. Moreover these patients have a genomic profile of their tumor that suggests that 95% of these are “at high recurrence risk and would likely benefit from adjuvant chemotherapy,” the researchers concluded.

The researchers identified the importance of the delta Exon 7 deletion through a test called BluePrint®, which was developed by Agendia. BluePrint is one part of a suite of related breast cancer tests called Symphony, which provides a complete view of a patient’s prognosis and help guide their individual treatment decisions through genomic profiling.

“The researchers identified the presence of the Exon 7 variant of the estrogen receptor while trying to determine why some breast cancer patients who tested ER+ in the classical test for receptor status turned out to be of the ‘basal-like’ subtype by the BluePrint assay, which indicates a lack of a functional estrogen pathway, noted Stephanie R. Akbari, M.D., Medical Director of the Reinsch Pierce Family Center for Breast Health at Virginia Hospital Center, a member of the research team. Medical experts have long established that ER+ tumors typically benefit from hormonal therapies, but we also know that not all patients with ER+ tumors benefit from this therapy. “This finding may help identify those patients that are unlikely to benefit from hormonal therapy.”

Dr. Akbari said. “Our findings show that, as we discover the importance of splicing variants such as Exon7, additional molecular subtyping of a patient’s tumor is necessary to reach a more accurate understanding of the disease.”

Agendia CEO David Macdonald said, “Agendia’s Symphony is the only commercially available test suite that provides molecular subtyping and can identify the growing body of important genetic variants such as Exon 7. This research underscores Agendia’s commitment to ongoing discovery and collaboration between industry and physician-directed research in bringing scientific advances into clinical practice.”

Study: Estrogen receptor splice variants as a potential source of false-positive estrogen receptor status in breast cancer diagnostics [Breast Cancer Research and Treatment]

Source: Agendia

Mount Sinai and Exosome Diagnostics Partner to Accelerate Translation of Body Fluid Molecular Diagnostics to Overcome Limitations of Tissue Biopsy in Areas of Critical Unmet Medical Needs

The Icahn School of Medicine at Mount Sinai and Exosome Diagnostics today announced a collaboration on the research and development of real-time nucleic acid-based body-fluid diagnostics to advance personalized medicine. Exosome will provide technical and development support to Mount Sinai researchers along with early access to proprietary technology products upgrades. The agreement will allow Exosome and Mount Sinai to establish targeted research and biomarker discovery programs in oncology, inflammation and other disease areas. Exosome anticipates pursuing commercial development and FDA review of successful validations for in vitro diagnostics.

“This collaboration represents the model that research centers and private companies need to adopt in the post-recession, sequestered economy to develop diagnostic products that can improve clinical outcomes, help advance drug development programs and help lower healthcare costs,” said James McCullough, Chief Executive Officer of Exosome Diagnostics. “New York State has taken an aggressive and appropriate approach to promoting cooperation of its leading research centers, such as Mount Sinai, with private industry resources and commercial capability to drive translational medicine. Mount Sinai and Exosome together can accelerate cutting-edge diagnostic products to serve the clinical market.”

Carlos Cordon-Cardo, MD, PhD, Chair, Department of Pathology, Icahn School of Medicine at Mount Sinai, added, “As we advance our precise medicine program in the Departments of Pathology and Genomics at Mount Sinai, biofluid-based, point-in-time analyses, made possible by the Exosome Diagnostics-Mount Sinai relationship, will undoubtedly lead to an improved, patient-centric understanding of disease, thereby guiding more informed treatment decisions and response to therapy.”

The agreement was negotiated by Mount Sinai Innovation Partners (Mount Sinai IP), which encourages the commercialization of novel research conducted at the Icahn School of Medicine at Mount Sinai. Mount Sinai plans to leverage the considerable expertise of its clinical investigators in areas of key unmet medical needs to develop clinical study programs taking advantage of Exosome’s unique technology that has the ability to extract high-quality RNA from blood, urine and cerebrospinal fluid.

Under the agreement, Mount Sinai will retain rights to molecular biomarkers associated with disease progression and drug response, and Exosome will retain commercial development rights for molecular in vitro diagnostic products. The collaboration will extend for five years. Dr. Cordon-Cardo receives financial compensation from Exosome Diagnostics as a member of its scientific advisory board.

Source: PR Newswire

Breakthrough Case Study Highlights New Biomarker for Cancer and Inflammation

A groundbreaking peer reviewed case report by Dr. Isaac Eliaz, M.D. of Amitabha Medical Clinic, demonstrates for the first time the clinical use of novel biomarker galectin-3 to assess cancer progression and inflammation. The case study titled, “The Role of Galectin-3 as a Marker of Cancer and Inflammation in a Stage IV Ovarian Cancer Patient with Underlying Pro-Inflammatory Comorbidities,” was published in the July 2013 issue of Case Reports in Oncology. This report is the first of its kind to expand the diagnostic and prognostic applications of the galectin-3 blood serum test, introducing an important clinical tool to assess risk and progression of metastatic cancer and inflammatory diseases.

In 2011, the galectin-3 blood test was approved by the U.S. Food and Drug Administration for the screening and prognosis of congestive heart failure and cardiovascular disease. Approval was granted after an extensive body of published data, including long-term population studies, demonstrated the active role of elevated galectin-3 in cardiovascular conditions, fibrosis and early mortality. However, a rapidly expanding field of published galectin-3 research also highlights the significance of this rogue molecule as a novel biomarker that is both an active culprit as well as a byproduct of numerous inflammatory and malignant cellular processes beyond cardiovascular disease.

An expert on galectin-3, Dr. Eliaz applies the data obtained in this case study to shed further light on excess galectin-3’s mechanisms of action, specifically inflammatory response to injury and cancer progression. In this report, Dr. Eliaz presents the first published case documenting the clinical use of galectin-3 to monitor cancer progression and treatment response, as well as inflammatory conditions. These findings point to an expanded clinical model using galectin-3 testing in the diagnostic and prognostic assessment of numerous chronic, inflammatory diseases.

Unlike biomarkers such as C-reactive protein (CRP), which only indicate the presence of inflammation, galactin-3 is shown to play a direct role in initiating disease progression. It is a protein normally present in the body at low concentrations, where it is involved in numerous functions including cell growth and communication. At elevated levels, however, galectin-3 fuels numerous pathologic processes including chronic inflammation and the progression of inflammation to fibrosis; cancer cell adhesion, migration, angiogenesis, and metastasis. Elevated galectin-3 also allows cancer cells to evade immune response. Research demonstrates elevated galectin-3 levels in patients with melanoma, lung, breast, prostate, colorectal, ovarian, and head and neck cancers as well as non-Hodgkin’s lymphoma and others. Galectin-3 levels are also found to be higher in patients with metastatic disease than in patients with localized tumors.

Dr. Eliaz states, “This new case report and significant clinical observation supports the need for further research on the role of galectin-3. The galectin-3 test could well become one of our most important clinical tools in assessing and monitoring a wide range of conditions beyond cardiovascular disease, including metastatic cancer and inflammatory conditions.”

Study: The Role of Galectin-3 as a Marker of Cancer and Inflammation in a Stage IV Ovarian Cancer Patient with Underlying Pro-Inflammatory Comorbidities. [Case Reports in Oncology]

Source: PR Newswire

Breakthrough Case Study Highlights New Biomarker for Cancer and Inflammation

A groundbreaking peer reviewed case report by Dr. Isaac Eliaz, M.D. of Amitabha Medical Clinic, demonstrates for the first time the clinical use of novel biomarker galectin-3 to assess cancer progression and inflammation. The case study titled, “The Role of Galectin-3 as a Marker of Cancer and Inflammation in a Stage IV Ovarian Cancer Patient with Underlying Pro-Inflammatory Comorbidities,” was published in the July 2013 issue of Case Reports in Oncology. This report is the first of its kind to expand the diagnostic and prognostic applications of the galectin-3 blood serum test, introducing an important clinical tool to assess risk and progression of metastatic cancer and inflammatory diseases.

In 2011, the galectin-3 blood test was approved by the U.S. Food and Drug Administration for the screening and prognosis of congestive heart failure and cardiovascular disease. Approval was granted after an extensive body of published data, including long-term population studies, demonstrated the active role of elevated galectin-3 in cardiovascular conditions, fibrosis and early mortality. However, a rapidly expanding field of published galectin-3 research also highlights the significance of this rogue molecule as a novel biomarker that is both an active culprit as well as a byproduct of numerous inflammatory and malignant cellular processes beyond cardiovascular disease.

An expert on galectin-3, Dr. Eliaz applies the data obtained in this case study to shed further light on excess galectin-3’s mechanisms of action, specifically inflammatory response to injury and cancer progression. In this report, Dr. Eliaz presents the first published case documenting the clinical use of galectin-3 to monitor cancer progression and treatment response, as well as inflammatory conditions. These findings point to an expanded clinical model using galectin-3 testing in the diagnostic and prognostic assessment of numerous chronic, inflammatory diseases.

Unlike biomarkers such as C-reactive protein (CRP), which only indicate the presence of inflammation, galactin-3 is shown to play a direct role in initiating disease progression. It is a protein normally present in the body at low concentrations, where it is involved in numerous functions including cell growth and communication. At elevated levels, however, galectin-3 fuels numerous pathologic processes including chronic inflammation and the progression of inflammation to fibrosis; cancer cell adhesion, migration, angiogenesis, and metastasis. Elevated galectin-3 also allows cancer cells to evade immune response. Research demonstrates elevated galectin-3 levels in patients with melanoma, lung, breast, prostate, colorectal, ovarian, and head and neck cancers as well as non-Hodgkin’s lymphoma and others. Galectin-3 levels are also found to be higher in patients with metastatic disease than in patients with localized tumors.

Dr. Eliaz states, “This new case report and significant clinical observation supports the need for further research on the role of galectin-3. The galectin-3 test could well become one of our most important clinical tools in assessing and monitoring a wide range of conditions beyond cardiovascular disease, including metastatic cancer and inflammatory conditions.”

Study: The Role of Galectin-3 as a Marker of Cancer and Inflammation in a Stage IV Ovarian Cancer Patient with Underlying Pro-Inflammatory Comorbidities [Case Reports in Oncology]

Source: PR Newswire

ITN Type 1 Diabetes Study Identifies Subset of Patients with Strong Response to Therapy

Primary results from a new clinical trial show that patients with type 1 diabetes treated with the monoclonal antibody teplizumab (MacroGenics, Inc.) exhibit greater preservation of C-peptide, a biomarker of islet cell function, compared to controls. Further analyses identified a discrete subset of the treatment group that demonstrated especially robust responses (“responders”), suggesting that these patients could be identified prior to treatment. The trial, entitled “Autoimmunity-Blocking Antibody for Tolerance in Recently Diagnosed Type 1 Diabetes” (AbATE), was conducted by the Immune Tolerance Network (ITN). The results are available online and will be published in the November issue of the journal Diabetes.

The AbATE study, led by Kevan Herold, MD (Yale University), tested teplizumab, which targets the CD3 receptor found on T cells, in patients with new-onset type 1 diabetes. CD3 is required for T-cell activation, which can lead to the destruction of insulin-producing beta cells. A previous ITN study with teplizumab showed that a single course of the drug slowed C-peptide decline in new-onset patients for a year, after which the effects waned. The aim of the AbATE study was to test whether C-peptide preservation could be prolonged by administering two courses of teplizumab, one year apart.

In this open-label, Phase II study, 77 new-onset patients (ages 8 to 30 years old) were randomized to receive either teplizumab or a control. Those in the treatment arm received the scheduled treatment consisting of two 14-day courses of teplizumab, one year apart. Both arms received intensive diabetes care from certified diabetes educators and were followed for two years. The primary endpoint compared C-peptide preservation between the two groups.

After two years, the teplizumab-treated group showed significantly greater preservation of C-peptide (75-percent higher responses compared to the control group).

Further analysis revealed that within the treatment arm two groups of patients could be distinguished based on their C-peptide levels: one group, considered “responders” (22/49), showed very little C-peptide decline over the course of the study (only a 6 percent reduction from baseline), while the “non-responders” (27/49) exhibited a similar rate of C-peptide decline as the control group (less than 40-percent reduction from baseline).

Investigators measured various biomarkers and cell types that might distinguish between these two groups. They found that, at trial entry, “responders” had lower hemoglobin A1c levels (a marker of glucose concentration in the blood) and used less insulin at baseline, compared to “non-responders”. Differences in specific T-cell subsets also distinguished between the two groups at baseline, suggesting that immune status might contribute to drug responsiveness. However, further studies will be required to confirm these results.

“This overall approach to identifying characteristics of individuals most likely to respond to therapies shows great promise because the responders in this study experienced a robust and prolonged drug effect,” said Dr. Herold. “This type of response has not been seen in other studies of immune therapies.”

Type 1 diabetes is a disease marked by immune destruction of insulin-producing beta cells in the pancreas. New-onset patients usually have 20 to 40 percent of their normal beta cell mass remaining, which is still capable of producing insulin. Preserving this remaining mass, even temporarily, could improve long-term clinical outcomes.

Immune modulators, like teplizumab, represent a promising means of inducing tolerance; however, no drug has been shown to prevent or reverse disease, and only a few have temporarily delayed disease progression. The ability to identify a subgroup of patients who may be more responsive to therapy could greatly enhance the clinical use of immune modulators and improve outcomes for those patients. Further analyses with specimens collected from the AbATE study are ongoing to understand the mechanism of response.

Source: EurekAlert!