Quantcast

Industry news that matters to you.  Learn more

Nodality, Inc. Reports Promising Rheumatoid Arthritis Study Results to Predict Patient Treatment Response to TNF Inhibitors

Nodality, Inc., an innovative biotechnology company advancing discovery, development and use of transformative therapies by revealing functional systems biology, recently announced results of the Company’s comprehensive research study to identify cell markers (biomarkers) of disease activity and treatment success in rheumatoid arthritis (RA) patients. The study findings demonstrated that Nodality’s SCNP technology, which measures functional pathways at the single cell level, can be used to identify biomarkers of responsiveness to treatment with tumor necrosis factor inhibitors (TNFIs). RA affects an estimated two million Americans, and TNFIs constitute the most commonly prescribed therapy. Approximately half of patients respond to treatments such as TNFIs, leaving a substantial unmet need to identify which patients are more likely to respond to current therapies. Optimizing use of currently available therapies could potentially delay tissue damage and progression of disease.

SCNP provides the core technology foundation for Nodality’s programs dedicated to improving clinical medicine by increasing the efficiency of therapeutic R&D programs, enhancing life cycle management for commercialized drugs, and introducing new predictive diagnostics. The study results were featured in an oral presentation titled, Comparison of functional immune signaling profiles in peripheral blood mononuclear cells (PBMC) from rheumatoid arthritis (RA) patients versus healthy donors (HD) using Single Cell Network Profiling (SCNP) (Abstract W7.02.04), at the 15th International Congress of Immunology (ICI) in Milan, Italy, taking place August 22 to 27, 2013. The findings were presented by S. Louis Bridges, Jr., M.D., Ph.D., Marguerite Jones Harbert-Gene V. Ball, MD Professor of Medicine, Director, Division of Clinical Immunology and Rheumatology, University of Alabama School of Medicine.

“Nodality’s research program demonstrates the great promise and potential in gaining a better understanding of disease biology and applying this to the development of prognostic and predictive biomarkers for autoimmune diseases such as RA,” commented Alessandra Cesano, M.D., Ph.D., Chief Medical Officer of Nodality. “I look forward to the final results of this program, one of the most comprehensive of its kind. Our technology, based on immune-biology, can predict which RA patients will respond to specific therapies and reveal the mechanisms of drug resistance, thus informing alternative therapeutic strategies.”

The Nodality research program compares healthy and diseased peripheral blood cells at the single cell level, studying samples obtained through the national Treatment Efficacy and Toxicity in Rheumatoid Arthritis Database and Repository (TETRAD). Nodality anticipates completing its research program and announcing the key findings later this year.

Laura Brege, Nodality’s President and Chief Executive Officer, stated, “ICI has provided an important opportunity to showcase one of our key programs in immunology, further validating our broadly enabling SCNP platform. This platform has led to major collaborations in immunology addressing significant unmet needs among patients, as well as new predictive diagnostic modalities in blood cancers. Ultimately, Nodality’s goal is to accelerate and make more efficient the development of new therapeutic agents for serious diseases affecting large patient populations within immunology and oncology, two areas of continuing significant unmet clinical need.”

Additional program results were featured in a second oral presentation at the ICI Congress in a presentation titled, Functional proteomic interrogation of immune cell crosstalk and the effects of cytokine-targeted inhibitors using Single Cell Network Profiling (SCNP) (Abstract W7.02.03).

Source: Nodality, Inc

Potential Clue Associated with Aggressive Prostate Cancer Identified by Rutgers Investigators

Prostate cancer is one of the most common forms of cancer in men and the leading cause of cancer deaths in white, African-American and Hispanic men, according to the Centers for Disease Control. Current treatment of prostate cancer targets androgens, hormones which promote the growth and spread of cancer cells. However, it remains unclear why, despite treatment, some prostate cancers progress and may become fatal. Researchers at Robert Wood Johnson Medical School, part of Rutgers, The State University of New Jersey, who are studying the underlying mechanisms that cause invasive tumor growth have identified a key transcription factor, a protein which regulates the flow of information from DNA, that is over-produced in treatment-resistant prostate cancer, as well as the two protein kinases that trigger the process. This finding, published and highlighted on the cover of the July issue of Molecular Cancer Research, a journal of the American Association for Cancer Research (AACR) could be utilized to develop treatments for prostate cancer that is resistant to current therapies.

The research team, led by Joseph Fondell, PhD, associate professor of pharmacology, found that in clinically localized human prostate cancer — cancer that is confined to the prostate and pelvic area — the key transcription factor termed MED1 is overexpressed, meaning that significantly more MED1 is produced than is typical. According to Fondell, the finding potentially could be used as a biomarker in cancer screenings, indicating to oncologists that the prostate cancer has become aggressive. “As MED1 is a known co-activator of androgen receptors, the overexpression of MED1 is thought to facilitate alternative gene expression patterns that drive treatment-resistant cancer cell growth in the prostate,” Fondell said.

“Our study showed for the first time that MED1 expression is elevated in malignant cells of a statistically significant number of patients with clinical prostate cancer and that this overexpression correlates with an increase in cancer cell growth and invasiveness,” said Feng Jin, PhD, a former graduate student in Fondell’s lab and first author on the study. “In addition to accelerated tumor growth, our study showed that overexpression of MED1 may also be involved with inflammation of the prostate.”

Further study of the process using mouse models that mimic human prostate cancer, showed that two protein kinases, ERK and PI3K/AKT, were overactive and responsible for MED1 overproduction, ultimately accelerating the progression and spread of prostate cancer.

“Whereas the current treatment approach for prostate cancer is to prohibit androgen production and signaling, our findings indicate that MED1 could represent a novel target for new therapies that stop the process at the molecular level, before prostate cancer can progress to an advanced stage,” added Fondell, who also is a member of Rutgers Cancer Institute of New Jersey.

Study: ERK and AKT Signaling Drive MED1 Overexpression in Prostate Cancer in Association with Elevated Proliferation and Tumorigenicity [Molecular Cancer Research]

Source: Robert Wood Johnson Medical School

Pfizer-KineMed Collaboration Extends to Target Novel Diabetes Pathways

KineMed Inc. (www.kinemed.com) today announced the renewal of a non-exclusive research collaboration with Pfizer Inc. (NYSE: PFE) for the advancement of novel approaches towards metabolic disease, in particular Type II Diabetes. The collaboration will employ KineMed’s unique dynamic proteomics technology platform to map the impact of potential drug candidates on specific metabolic pathways.

Diabetes is an emerging global healthcare epidemic with an estimated 347 million people affected, according to the WHO. Diabetes is predicted to become the seventh leading cause of death in the world by the year 2030 and total deaths from diabetes are projected to rise by more than 50% in the next 10 years.

In the United States Type II diabetes affects over one quarter of Americans over the age of 65. Diabetes is a major cause of heart disease and stroke, and is now also the leading cause of kidney failure, non-traumatic lower-limb amputations and new cases of blindness among adults.

Despite 50 years of drug research, over 60% of patients remain unresponsive to current therapies, requiring novel approaches to address fundamental metabolic processes in diabetes.

“We are very pleased to announce the renewal of this ongoing partnership in an important area of medicine that affects so many Americans. Powerful discovery and investigative abilities of novel disease pathways are key strengths of our translational platform,” said Dr. Scott Turner, Executive Vice-President, R&D at KineMed. “We look forward to continuing to work with Pfizer to accelerate and rapidly de-risk the advancement of novel compounds in pre-clinical and clinical trials.”

Source: Business Wire

Early Biomarker for Pancreatic Cancer Identified

Researchers at the University of California, San Diego School of Medicine and Moores Cancer Center have identified a new biomarker and therapeutic target for pancreatic cancer, an often-fatal disease for which there is currently no reliable method for early detection or therapeutic intervention. The paper will be published May 15 in Cancer Research.