Quantcast

Industry news that matters to you.  Learn more

Utility Of Rubicon Genomics’ ThruPLEX-FD Kit Validated In Study Showing “Liquid Biopsy” Can Track Genomic Evolution Of Cancer In Response To Therapy

Rubicon Genomics, Inc., a leader in the development and commercialization of innovative sample-specific nucleic acid library preparation products used in research and clinical testing, recently reported that its ThruPLEXTM-FD Prep Kits contributed to the success of a breakthrough study recently published in Nature1 that showed that genomic data extracted from the plasma of cancer patients can be used to track drug resistance and potentially guide treatment.

Broad Institute and Bayer Join Forces to Develop Novel Treatment Options in Cancer Therapy

The Broad Institute has entered into a strategic alliance with Bayer Healthcare in the area of oncogenomics and drug discovery. The goal of this collaboration is to jointly discover and develop therapeutic agents that selectively target cancer genome alterations over a period of five years.

“We look forward to working together with our Bayer colleagues to translate scientific discoveries into novel cancer therapeutics,” said Professor Eric Lander, President and Director of Broad Institute. “The Broad’s deep expertise and knowledge in cancer genomics, chemical biology and drug discovery perfectly complement Bayer’s decades of experience in pharmaceutical development. We are thrilled to be working with Bayer in such a visionary collaboration.”

Oncogenomics is a promising field of oncology research that identifies and characterizes genes which are associated with cancer. Cancer is caused by the accumulation of DNA mutations which lead to uncontrolled cell proliferation and tumor formation. The goal of oncogenomics research is to identify new genes which, when mutated, stimulate or lose the ability to suppress tumor cell growth. These genes may provide new insights into cancer diagnosis, prediction of clinical outcomes, and new targets for cancer therapies. Targeting individual patient tumor mutations will allow for the development of more personalized cancer treatments.

“We are excited to collaborate with such a prestigious research institute as the Broad Institute which brings together researchers from Harvard, MIT, and the Harvard hospitals,” said Professor Andreas Busch, Head of Global Drug Discovery and Member of the Executive Committee of Bayer HealthCare. “The Broad Institute’s scientists have created impressive systematic catalogues of mutational changes across different types of tumors, laying a foundation for the development of new cancer therapies and diagnostics. The alliance is another significant step underlining our engagement in the field of oncology and personalized medicine.”

As part of the collaboration, the Broad Institute will share its oncogenomic expertise. Both parties will explore their compound libraries and use their screening platforms as well as medicinal chemistry expertise to benefit joint projects. The collaboration will be based on joint decision-making and the rights to the research findings are shared equally between the partners. Joint research and joint steering committees will be established for the initiation and selection of projects, and as governance structures. Bayer will have an option for an exclusive license for therapeutic agents at preclinical development stage. Financial terms of the agreement were not disclosed.

Source: Broad Institute

Quintiles Asks, ‘Why Not Test for Many Biomarkers at Once?’ When Evaluating Therapies for Cancer Patients

Calling the concept “pre-profiling,” Quintiles (Research Triangle Park, NC) is collaborating with US Oncology Research (the research arm of McKesson Specialty Health) to test the value of running multiple biomarker tests at once for cancer patients—in this case those with metastatic colorectal cancer (mCRC). Either for initial therapy, or as a step to selecting candidates for clinical trials, the current practice is to look for genomic data that is relevant to one type of therapy; if the suitable genomic variant is found, the clinician then knows that the patient is a good trial candidate, or that the patient could benefit from a specific therapy. Quintiles is suggesting to look at many variants or makers initially and then make treatment or trial recruitment decisions.

In practice, says Dr. Jeffrey Spaeder, CMO at Quintiles, a biopsy would be retrieved from the patient, DNA and other genomic information sequenced, abnormalities identified, and bioinformatics analysis conducted, then returning the results back to the clinician. “All these steps sound intuitively straightforward, but they involve complex handoffs of information and clinical decisions,” he says. Understanding what the clinician can do with the data needs to be determined; what choices the patient might have for one therapy or another; and in the final analysis, whether better outcomes could be achieved remain to be evaluated. Eventually, the multiple-biomarker process could become a step in the clinical pathways that various organizations have developed for treatment of cancers. “Early indications from this study suggest that we can provide physicians and patients with early visibility on potentially clinically actionable biomarkers within a rapid two-week timeframe. This level and speed of analysis has promise to save valuable time in administering potentially life-saving therapies to patients, and reduce the development times of precision medicines.”

The biomarker field, while demonstrating exciting new potential and spurring the evolution of personalized (or “precision”) medicine, is fraught with operational difficulties. Insurers are selective about what biomarker tests they are willing to pay for; practitioners have varying enthusiasm for the tests, and the clarity around which tests lead to beneficial outcomes are not clear. Even so, this study could be one of a series of medical innovations to make biomarkers a standard element of cancer therapy.

Source: Pharmaceutical Commerce

Unexpected Synergy Between Two Cancer-linked Proteins Offers Hope for Personalised Cancer Therapy

A team of scientists led by Associate Professor Zeng Qi from A*STAR’s Institute of Molecular and Cell Biology (IMCB) have discovered a new biomarker which will help physicians predict how well cancer patients respond to cancer drugs. Having the means to identify patients who are most likely to benefit from currently available cancer drugs not only reduces substantially the healthcare cost for the patient, it could mean saving precious lives by getting the right drugs to the right patient at the onset of the treatment. This study published and featured on August cover of the Journal of Clinical Investigation will boost the development of personalised medicine in cancer care and therapy.

Metastasis is the rapid and uncontrollable spread of cancer cells from the primary tumour to other parts of the body. It is often the leading cause of death in cancer patients. Increasingly, there is evidence to show that in many cancers that have metastasised, a protein called PRL-3 is often found to be present at unusually high levels. Since it was first identified in 1998 by Associate Professor Zeng, several other research groups have found evidence to support the strong link between elevated levels of PRL-3 protein and the metastasis of aggressive cancers in the lung, liver, colon and breast. This cancer-promoting action of PRL-3 makes it an ideal target for cancer diagnostics and treatment.

In this study, the IMCB team discovered a curious synergy between PRL-3 and EGFR, another well-known cancer-linked protein frequently associated with breast and lung cancers in humans. They found that cancer cells with higher levels of PRL-3 not only hyperactivate EGFR, but also develop an ‘addiction’ for it to survive. Consequently, by suppressing EGFR activity with EGFR inhibitor drugs, the scientists observed that cancer cells with higher levels of PRL-3 were more rapidly destroyed. To validate these findings in humans, the team collaborated with Associate Professor Wee Joo Chng from the National University Health System to run an analysis on pre-existing clinical data of colorectal cancer patients. The results confirmed that patients who respond better to EGFR inhibitor drugs were those suffering from cancers with abnormally high levels of PRL-3.

Associate Professor Zeng said, “This unexpected synergy has revealed a vulnerable spot of aggressive cancers and brought new hope of treating PRL-3 driven cancers successfully. The addiction phenomenon we observed in cancer cells is akin to depriving alcohol from an alcoholic, thereby inducing the severe ‘withdrawal effects’. In the same way, by selecting cancer patients with elevated levels of PRL-3 and greater ‘addiction’ of EGFR for anti-EGFR treatment, we can deliver more effective and targeted cancer therapy with the existing EGFR inhibitor cancer drugs.”

Professor Sir David Lane, Chief Scientist of A*STAR said, “This is an excellent example of how years of basic research lay the foundation for advancement in translational and clinical applications. I am pleased that the team is exploring the potentials of developing this new predictive biomarker into a rapid diagnostic kit for identifying patients who will respond favourably to current anti-EGFR treatment. I believe that this study will open new avenues for personalised medicine in cancer therapy.”

Study: Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells [Journal of Clinical Investigation]

Source: Agency for Science, Technology and Research (A*STAR)

Response Genetics, Inc. Announces Contract With Blue Cross and Blue Shield of Illinois

Response Genetics, Inc. (Nasdaq:RGDX), a company focused on the development and sale of molecular diagnostic tests that help determine a patient’s response to cancer therapy, recently announced that it has recently executed a provider contract with Blue Cross and Blue Shield of Illinois. Blue Cross and Blue Shield of Illinois has 7.4 million members, most of whom are located in the State of Illinois.

With the execution of this agreement, oncologists and pathologists affiliated with this health plan now have the ability to more easily offer Response Genetics’ suite of molecular predictive testing for their patients battling lung, colon, gastric, and melanoma cancers. Response Genetics’ tests provide treating physicians with actionable information that help enable the best therapy to be employed for each individual patient. The personalized medicine inherent in Response Genetics’ testing services brings with it a value proposition that is expected to improve patient outcomes and as a result enhance efficiencies in health care delivery.

The contract with this Blue Cross Blue Shield Association affiliate complements Response Genetics’ existing managed care network and gives the CLIA-licensed lab access to millions of additional Blue Cross Blue Shield-insured members located primarily in Illinois and the Midwestern United States. Blue Cross and Blue Shield of Illinois is the oldest and largest health plan based in Illinois.

Source: Response Genetics