Quantcast

Industry news that matters to you.  Learn more

Eutropics and Tolero Pharmaceuticals to Collaborate on Developing a Companion Diagnostic for Experimental Cancer Therapy

Eutropics, Inc , (Cambridge, MA) and Tolero Pharmaceuticals, Inc, (Lehi, UT) recently announced a strategic alliance to utilize Eutropics’ companion diagnostic approach to assist in the development of Tolero’s experimental therapeutics for hematological malignancies. Under the terms of the agreement, Eutropics’ proprietary biomarker platform, Praedicare-Dx, will be used to support the development of Tolero’s therapeutic portfolio, particularly Tolero’s Phase III ready asset, alvocidib. Alvocidib is an experimental therapeutic that has demonstrated clinical activity in patients with acute myelogenous leukemia (AML) and chronic lymphocytic leukemia (CLL). Patient stratification using Eutropics’ companion diagnostics approach will be explored as a way to improve patient care by matching specific therapies to the specific individuals most likely to benefit.

Alnylam and Genzyme Form Transformational Alliance for RNAi Therapeutics as Genetic Medicines

Alnylam Pharmaceuticals, Inc. (Nasdaq:ALNY), a leading RNAi therapeutics company, and Genzyme, a Sanofi company (EURONEXT:SAN and NYSE:SNY), recently announced that they have formed a transformational alliance for the development and commercialization of RNAi therapeutics as genetic medicines. Genzyme and Alnylam have formed this new alliance to accelerate and expand the development and commercialization of RNAi therapeutics across the world. Alnylam will retain product rights in North America and Western Europe, while Genzyme will obtain the right to access Alnylam’s current “5×15”1 and future genetic medicines pipeline in the rest of the world (ROW), including global product rights for certain programs. In addition, Genzyme becomes a major Alnylam shareholder through an upfront purchase of $700 million of newly issued stock at approximately $80/share, representing an approximately 12% ownership position. This alliance significantly bolsters Alnylam’s balance sheet to over $1 billion in cash, enabling an increased investment in the company’s RNAi therapeutics pipeline and is expected to secure Alnylam’s financial independence through to multiple product launches.

Broad Institute and Bayer Join Forces to Develop Novel Treatment Options in Cancer Therapy

The Broad Institute has entered into a strategic alliance with Bayer Healthcare in the area of oncogenomics and drug discovery. The goal of this collaboration is to jointly discover and develop therapeutic agents that selectively target cancer genome alterations over a period of five years.

“We look forward to working together with our Bayer colleagues to translate scientific discoveries into novel cancer therapeutics,” said Professor Eric Lander, President and Director of Broad Institute. “The Broad’s deep expertise and knowledge in cancer genomics, chemical biology and drug discovery perfectly complement Bayer’s decades of experience in pharmaceutical development. We are thrilled to be working with Bayer in such a visionary collaboration.”

Oncogenomics is a promising field of oncology research that identifies and characterizes genes which are associated with cancer. Cancer is caused by the accumulation of DNA mutations which lead to uncontrolled cell proliferation and tumor formation. The goal of oncogenomics research is to identify new genes which, when mutated, stimulate or lose the ability to suppress tumor cell growth. These genes may provide new insights into cancer diagnosis, prediction of clinical outcomes, and new targets for cancer therapies. Targeting individual patient tumor mutations will allow for the development of more personalized cancer treatments.

“We are excited to collaborate with such a prestigious research institute as the Broad Institute which brings together researchers from Harvard, MIT, and the Harvard hospitals,” said Professor Andreas Busch, Head of Global Drug Discovery and Member of the Executive Committee of Bayer HealthCare. “The Broad Institute’s scientists have created impressive systematic catalogues of mutational changes across different types of tumors, laying a foundation for the development of new cancer therapies and diagnostics. The alliance is another significant step underlining our engagement in the field of oncology and personalized medicine.”

As part of the collaboration, the Broad Institute will share its oncogenomic expertise. Both parties will explore their compound libraries and use their screening platforms as well as medicinal chemistry expertise to benefit joint projects. The collaboration will be based on joint decision-making and the rights to the research findings are shared equally between the partners. Joint research and joint steering committees will be established for the initiation and selection of projects, and as governance structures. Bayer will have an option for an exclusive license for therapeutic agents at preclinical development stage. Financial terms of the agreement were not disclosed.

Source: Broad Institute

BIDMC Cardiovascular Institute Researchers Will Lead $4 Million NIH Grant to Study MicroRNAs

A cardiovascular research team from Beth Israel Deaconess Medical Center (BIDMC) and Brigham and Women’s Hospital (BWH), led by BIDMC Principal Investigator Saumya Das, MD, PhD, has been awarded a $4 million Common Fund grant from the National Institutes of Health (NIH) as part of a newly formed program on Extracellular RNA Communication. The five-year grant will focus on identifying microRNA biomarkers in heart disease.

Each year, complications from heart attacks (myocardial infarctions) contribute to more than half a million cases of heart failure and 300,000 cases of sudden cardiac arrest, when the heart suddenly stops. Both of these conditions are closely related to a process known as remodeling, in which the structure and function of the heart changes – or remodels — following a heart attack.

“Our goal is to explore the role that microRNAs play in predicting which heart-attack patients will go on to experience complications,” explains Das, an electrophysiologist in BIDMC’s Cardiovascular Institute and co-director of the cardiovascular genetics program within the Outpatient Cardiovascular Clinic.

“Current strategies used to identify the highest risk patients have often been inaccurate,” he adds. “We think that a blood test that makes use of microRNA biomarkers could replace existing strategies and more accurately predict which patients might experience poor outcomes and thereby identify who would most benefit from frequent monitoring and medical care.” Other investigators who are part of the NIH grant, “Plasma miRNA Predictors of Adverse Mechanical and Electrical Remodeling After Myocardial Infarction,” include BIDMC Director of Cardiovascular Research Anthony Rosenzweig, MD, and BWH investigators Raymond Y. Kwong, MD, MPH, and Mark Sabatine, MD, MPH.

microRNAs are one type of extracellular RNA. Once considered nothing more than genomic “junk,” microRNAs have more recently been recognized as playing a key role in cellular functions. Several years ago, scientists began to recognize that these small, noncoding RNAs were not only found inside cells, but could also be found in blood and other tissue fluids.

Using patient plasma samples from extensively characterized patients who have suffered heart attacks, the scientific team will first identify which specific microRNAs are related to poor heart remodeling. They will then use cell culture and animal models of heart disease to further prioritize which microRNAs play a functional role in disease progression. Finally, the investigators will validate these prioritized microRNAs as prognostic markers for poor health outcomes after heart attacks in a large prospective clinical trial.

“Ultimately, we think that miRNA-based tests could replace current tests to predict which patients might be at risk of complications and, therefore, be good candidates to receive an implanted defibrillator,” says Das. “At the same time, we hope to be able to better predict which individuals are at less risk of complications – and thereby spare them unnecessary and costly procedures.”

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC has a network of community partners that includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Source: Beth Israel Deaconess Medical Center

Northwestern Medicine Enrolls First Participant in Midwest for Research Study of Personalized Vaccine for Aggressive Brain Tumors

Northwestern Medicine® recently joined a landmark clinical trial to investigate if a vaccine made from a patient’s own brain tumor is effective in slowing tumor progression and extending survival. The randomized phase II trial will study how well giving the study vaccine with or without Avastin (bevacizumab) works in treating patients with recurrent glioblastoma multiforme (GBM). The study is the largest randomized brain tumor vaccine trial ever funded by the National Cancer Institute (NCI) and is chaired by Andrew T. Parsa, MD, PhD, who joined Northwestern Memorial Hospital in July as the new chair of neurological surgery. The first participant in the Midwest, and only third in the country, was enrolled in the trial last week at Northwestern Memorial.

The trial will enroll more than 200 participants with recurrent glioblastoma that can be surgically removed. Following the participant’s surgery, the tumor is sent to an industry collaborator Agenus Inc., where the participant’s specific personalized vaccine, designated as HSPPC-96, is created. The vaccine is unique to the individual participant and is engineered to trigger an immune system response to kill tumor cells that may remain following surgery.

“This is truly personalized medicine where the patient’s own tumor is being used to help fight their cancer,” said Parsa, who is also the Michael J. Marchese Professor and chair of the department of neurological surgery at Northwestern University Feinberg School of Medicine and a member of the of Robert H. Lurie Comprehensive Cancer Center of Northwestern University and part of the Northwestern Brain Tumor Institute. “The vaccine provokes a tumor-specific immune response that is specific to that patient. The T cells, which are the part of the immune system that fights disease, tracks down the cancer cells and kills them.”

Parsa launched this area of research in 2006 at the University of California, San Francisco (UCSF). Previous phases of this research have returned promising results finding that the vaccine extended survival for participants with glioblastoma when compared to standard therapies. In this next phase, researchers are seeking to understand if the vaccine is safe and more effective when given with Avastin, a drug that is known to shrink brain tumors and is a standard therapy for recurrent glioblastoma. Trial participants will be randomized to either receive the vaccine alone, concurrently with Avastin or Avastin only. Jeffrey Raizer, MD, co-director of the Northwestern Brain Tumor Institute (NBTI), is the principal investigator for the trial at Northwestern.

“This vaccine therapy has the potential to extend the lives of patients who often have limited options when their tumor returns,” said Raizer, medical director of neuro-oncology at Northwestern Memorial, associate professor of neurology at the Feinberg School and a member of the Lurie Cancer Center. “Previous results indicate that we may be able to extend survival longer by combining the therapy with other drugs, such as Avastin, that may boost the immune response of the vaccine.”

Each year, 17,000 Americans are diagnosed with glioblastoma, a particularly aggressive form of brain cancer. This type of tumor is often resistant to standard therapies and median survival is approximately 15 months from the point of first diagnosis.

“This research does not present a cure for brain tumors, but instead a potential way to convert the cancer into a chronic disease – something comparable to diabetes that you may be able to live with and control with medication,” said Parsa.

A successful trial could lead to the vaccine potentially being approved to treat recurrent brain tumors, making it one of only a few approved therapeutic cancer vaccines.

“Vaccine therapy is rapidly emerging as a potential treatment for many types of cancers and we’re proud that Northwestern is part of this exciting research,” said Steven T. Rosen, MD, director of the Lurie Cancer Center, director of cancer programs at Northwestern Memorial, and Genevieve E. Teuton Professor of Medicine at the Feinberg School. “This field of research has the potential to offer safer and less toxic cancer therapies that can be personalized to each individual patient.”

The study is sponsored by the Alliance for Clinical Trials in Oncology (ALLIANCE), a cooperative group of the NCI, and the vaccine is being developed by Agenus Inc. Parsa has not received any financial support or travel expense from the company.

To learn more about the clinical trial, call 312-695-2047 or email kskirnyk@nmff.org. Enrollment criteria can be viewed on the Lurie Cancer Center website.

Northwestern’s neurology and neurological surgery program is ranked as 7th in the country on the U.S. News & World Report 2013-14 Best Hospitals specialty rankings and 1st in Chicago. This is the seventh consecutive year that Northwestern is the highest ranked neurological program in Illinois and Chicago. The departments of neurology and neurological surgery provide treatment for a full range of neurological disorders and offer patients the latest and most sophisticated treatment and surgical options. Our neurologists and neurosurgeons are actively engaged in clinical research to advance new therapies and uncover the causes and cures of neurological diseases.

Source: PR Newswire