Quantcast

Industry news that matters to you.  Learn more

Key Assay Development at HUPO

Proteome Sciences presented novel data and key assay developments at the HUPO 12th Annual World Congress in Japan covering Tau in Alzheimer’s disease, SysQuant® in pancreatic cancer and a missing isoform in sugar structures of clusterin, a plasma protein biomarker for Alzheimer’s in brain atrophy.

pTau

The new Tau phosphorylation assay (pTau SRM) demonstrated powerful sensitivity and reproductivity measuring Tau phosphorylation on human and mouse models of Alzheimer’s disease from a much smaller sample amount.

In a different application the pTau SRM was successfully used to determine the effect of Tau kinase inhibitors PS110 and PS278-05 on CK1d on the Tau protein in a mouse model of Alzheimer’s. The results confirmed that Tau phosphorylation was reduced by the two compounds but not affected by the control substance.

SysQuant®

Over 5,000 different phosphorylation sites were quantified in tumour and healthy tissue in pancreas cancer with SysQuant®. In addition to major alterations in proteins related to cell morphology and motility, individual patterns of pathway activation were able to accurately predict the likelihood of tumour recurrence and to provide a truly personalised treatment regime.

Glycopreotomics

Novel data was presented that showed diagnostic changes in sugar structures attached to clusterin, a plasma marker for Alzheimer’s in brain atrophy. This revealed a unique isoform that lacked a specific branching pattern in patients with high levels of brain atrophy.

Commenting from Yokohama, Dr. Ian Pike, Chief Operating Officer, said: 

“We were delighted to be invited to the 12th HUPO congress to show results from the powerful biomarker services platform that we have developed from our TMT® mass tags for customers where we are at the forefront in proteomics. New assays for pTau and clusterin glycoprotein provide important additions to the range of assays and services that we offer our customers in Alzheimer’s The added power delivered by SysQuant® identifies thousands of phosphorylation sites across key signalling pathways that give clinicians the ability for the first time to provide real time patient management, in this case in pancreas cancer. These are exciting developments from proteomics that are fundamentally changing how clinicians identify and manage disease.”

Source: Proteome Sciences

Imaging in Mental Health and Improving the Diagnostic Process

What are some of the most troubling numbers in mental health? Six to 10 — the number of years it can take to properly diagnose a mental health condition. Dr. Elizabeth Osuch, a Researcher at Lawson Health Research Institute and a Psychiatrist at London Health Sciences Centre and the Department of Psychiatry at Western University, is helping to end misdiagnosis by looking for a ‘biomarker’ in the brain that will help diagnose and treat two commonly misdiagnosed disorders.

Major Depressive Disorder (MDD), otherwise known as Unipolar Disorder, and Bipolar Disorder (BD) are two common disorders. Currently, diagnosis is made by patient observation and verbal history. Mistakes are not uncommon, and patients can find themselves going from doctor to doctor receiving improper diagnoses and prescribed medications to little effect.

Dr. Osuch looked to identify a ‘biomarker’ in the brain which could help optimize the diagnostic process. She examined youth who were diagnosed with either MDD or BD (15 patients in each group) and imaged their brains with an MRI to see if there was a region of the brain which corresponded with the bipolarity index (BI). The BI is a diagnostic tool which encompasses varying degrees of bipolar disorder, identifying symptoms and behavior in order to place a patient on the spectrum.

What she found was the activation of the putamen correlated positively with BD. This is the region of the brain that controls motor skills, and has a strong link to reinforcement and reward. This speaks directly to the symptoms of bipolar disorder. “The identification of the putamen in our positive correlation may indicate a potential trait marker for the symptoms of mania in bipolar disorder,” states Dr. Osuch.

In order to reach this conclusion, the study approached mental health research from a different angle. “The unique aspect of this research is that, instead of dividing the patients by psychiatric diagnoses of bipolar disorder and unipolar depression, we correlated their functional brain images with a measure of bipolarity which spans across a spectrum of diagnoses.” Dr. Osuch explains, “This approach can help to uncover a ‘biomarker’ for bipolarity, independent of the current mood symptoms or mood state of the patient.”

Moving forward Dr. Osuch will repeat the study with more patients, seeking to prove that the activation of the putamen is the start of a trend in large numbers of patients. The hope is that one day there could be a definitive biological marker which could help differentiate the two disorders, leading to a faster diagnosis and optimal care.

In using a co-relative approach, a novel method in the field, Dr. Osuch uncovered results in patients that extend beyond verbal history and observation. These results may go on to change the way mental health is diagnosed, and subsequently treated, worldwide.

Study: Correlation of brain default mode network activation with bipolarity index in youth with mood disorders [Journal of Affective Disorders]

Source: EurekAlert!

ITN Type 1 Diabetes Study Identifies Subset of Patients with Strong Response to Therapy

Primary results from a new clinical trial show that patients with type 1 diabetes treated with the monoclonal antibody teplizumab (MacroGenics, Inc.) exhibit greater preservation of C-peptide, a biomarker of islet cell function, compared to controls. Further analyses identified a discrete subset of the treatment group that demonstrated especially robust responses (“responders”), suggesting that these patients could be identified prior to treatment. The trial, entitled “Autoimmunity-Blocking Antibody for Tolerance in Recently Diagnosed Type 1 Diabetes” (AbATE), was conducted by the Immune Tolerance Network (ITN). The results are available online and will be published in the November issue of the journal Diabetes.

The AbATE study, led by Kevan Herold, MD (Yale University), tested teplizumab, which targets the CD3 receptor found on T cells, in patients with new-onset type 1 diabetes. CD3 is required for T-cell activation, which can lead to the destruction of insulin-producing beta cells. A previous ITN study with teplizumab showed that a single course of the drug slowed C-peptide decline in new-onset patients for a year, after which the effects waned. The aim of the AbATE study was to test whether C-peptide preservation could be prolonged by administering two courses of teplizumab, one year apart.

In this open-label, Phase II study, 77 new-onset patients (ages 8 to 30 years old) were randomized to receive either teplizumab or a control. Those in the treatment arm received the scheduled treatment consisting of two 14-day courses of teplizumab, one year apart. Both arms received intensive diabetes care from certified diabetes educators and were followed for two years. The primary endpoint compared C-peptide preservation between the two groups.

After two years, the teplizumab-treated group showed significantly greater preservation of C-peptide (75-percent higher responses compared to the control group).

Further analysis revealed that within the treatment arm two groups of patients could be distinguished based on their C-peptide levels: one group, considered “responders” (22/49), showed very little C-peptide decline over the course of the study (only a 6 percent reduction from baseline), while the “non-responders” (27/49) exhibited a similar rate of C-peptide decline as the control group (less than 40-percent reduction from baseline).

Investigators measured various biomarkers and cell types that might distinguish between these two groups. They found that, at trial entry, “responders” had lower hemoglobin A1c levels (a marker of glucose concentration in the blood) and used less insulin at baseline, compared to “non-responders”. Differences in specific T-cell subsets also distinguished between the two groups at baseline, suggesting that immune status might contribute to drug responsiveness. However, further studies will be required to confirm these results.

“This overall approach to identifying characteristics of individuals most likely to respond to therapies shows great promise because the responders in this study experienced a robust and prolonged drug effect,” said Dr. Herold. “This type of response has not been seen in other studies of immune therapies.”

Type 1 diabetes is a disease marked by immune destruction of insulin-producing beta cells in the pancreas. New-onset patients usually have 20 to 40 percent of their normal beta cell mass remaining, which is still capable of producing insulin. Preserving this remaining mass, even temporarily, could improve long-term clinical outcomes.

Immune modulators, like teplizumab, represent a promising means of inducing tolerance; however, no drug has been shown to prevent or reverse disease, and only a few have temporarily delayed disease progression. The ability to identify a subgroup of patients who may be more responsive to therapy could greatly enhance the clinical use of immune modulators and improve outcomes for those patients. Further analyses with specimens collected from the AbATE study are ongoing to understand the mechanism of response.

Source: EurekAlert!

Unexpected Synergy Between Two Cancer-linked Proteins Offers Hope for Personalised Cancer Therapy

A team of scientists led by Associate Professor Zeng Qi from A*STAR’s Institute of Molecular and Cell Biology (IMCB) have discovered a new biomarker which will help physicians predict how well cancer patients respond to cancer drugs. Having the means to identify patients who are most likely to benefit from currently available cancer drugs not only reduces substantially the healthcare cost for the patient, it could mean saving precious lives by getting the right drugs to the right patient at the onset of the treatment. This study published and featured on August cover of the Journal of Clinical Investigation will boost the development of personalised medicine in cancer care and therapy.

Metastasis is the rapid and uncontrollable spread of cancer cells from the primary tumour to other parts of the body. It is often the leading cause of death in cancer patients. Increasingly, there is evidence to show that in many cancers that have metastasised, a protein called PRL-3 is often found to be present at unusually high levels. Since it was first identified in 1998 by Associate Professor Zeng, several other research groups have found evidence to support the strong link between elevated levels of PRL-3 protein and the metastasis of aggressive cancers in the lung, liver, colon and breast. This cancer-promoting action of PRL-3 makes it an ideal target for cancer diagnostics and treatment.

In this study, the IMCB team discovered a curious synergy between PRL-3 and EGFR, another well-known cancer-linked protein frequently associated with breast and lung cancers in humans. They found that cancer cells with higher levels of PRL-3 not only hyperactivate EGFR, but also develop an ‘addiction’ for it to survive. Consequently, by suppressing EGFR activity with EGFR inhibitor drugs, the scientists observed that cancer cells with higher levels of PRL-3 were more rapidly destroyed. To validate these findings in humans, the team collaborated with Associate Professor Wee Joo Chng from the National University Health System to run an analysis on pre-existing clinical data of colorectal cancer patients. The results confirmed that patients who respond better to EGFR inhibitor drugs were those suffering from cancers with abnormally high levels of PRL-3.

Associate Professor Zeng said, “This unexpected synergy has revealed a vulnerable spot of aggressive cancers and brought new hope of treating PRL-3 driven cancers successfully. The addiction phenomenon we observed in cancer cells is akin to depriving alcohol from an alcoholic, thereby inducing the severe ‘withdrawal effects’. In the same way, by selecting cancer patients with elevated levels of PRL-3 and greater ‘addiction’ of EGFR for anti-EGFR treatment, we can deliver more effective and targeted cancer therapy with the existing EGFR inhibitor cancer drugs.”

Professor Sir David Lane, Chief Scientist of A*STAR said, “This is an excellent example of how years of basic research lay the foundation for advancement in translational and clinical applications. I am pleased that the team is exploring the potentials of developing this new predictive biomarker into a rapid diagnostic kit for identifying patients who will respond favourably to current anti-EGFR treatment. I believe that this study will open new avenues for personalised medicine in cancer therapy.”

Study: Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells [Journal of Clinical Investigation]

Source: Agency for Science, Technology and Research (A*STAR)

med fusion and Theranostics Health Release Novel Cancer Theranostic Test

med fusion and Theranostics Health will introduce the first of the TheraLink™Assays for use in patients with malignant diseases at the American Society of Clinical Oncology (ASCO) Annual ’13 Meeting, held in Chicago, IL from May 31, 2013 through June 4, 2013. The TheraLink™ HER Family Assay for primary, recurrent and metastatic breast cancers provides a molecular analysis of each patient’s unique cancer, based upon the functional activity of signal transduction pathways known to modulate cancerous growth. This ‘theranostic’ assay provides a comprehensive molecular profile of the HER family of cell surface receptors and three key signaling pathways modulated by the HER family which have important roles in the therapeutic approach to treating breast cancer. The TheraLink™ HER Family Assay is the first in a series of similar assays based upon measuring a panel of analytes, including a number of drug targets.

med fusion and Theranostics Health will also announce that they are entering into an exclusive distribution agreement for Theranostics Health’s TheraLink™ HER Family Assay. Under the terms of the agreement, med fusion and its affiliate, Pathologists Bio-Medical Laboratories (PBM), will provide a gateway for access to the theranostic test for the McKesson Network of oncologists, which includes US Oncology and Texas Oncology and to the oncologists of the Baylor Healthcare System. Oncologists will be able to order the assay through their pathology services directly from med fusion.

The TheraLink™ HER Family Assay measures the total amount and activation (phosphorylation) status of 14 critical proteins, receptors and signaling pathway members, providing actionable information for ten currently marketed therapeutics. Starting with a few histopathology sections taken from a core needle biopsy or open resection, the assay is a reverse-phase immunoassay that leverages the extreme sensitivity and precision of microarray technologies to measure these very low abundance proteins, with analyte-specific quantitation provided by on-array calibration samples along with positive and negative controls. The assay provides oncologists with actionable information on drug targets, directly linking active drug targets and the available therapies to identify the most effective personalized treatment options.

“We believe med fusion provides Theranostics Health with a unique opportunity to advance the use of the TheraLink™ Assays,” says Glenn Hoke , President and CEO of Theranostics Health. “Through relationships with their founders, including the McKesson family of health care companies and the Baylor Healthcare System, med fusion provides Theranostics Health with a strong marketing and distribution partner to ensure these assays find utility in the clinical setting.”

“Signal pathway analysis provides some of the most relevant information for targeting cancer therapies,” says Gary L. Smith , Ph.D., Interim CEO and Chief Operating Officer of med fusion. “Furthermore, our collaboration with Theranostics and PBM continues to support med fusion’s model of developing and creating strategic alliances that expand our offering of personalized diagnostic testing services within a patient-centric model of care delivery.”

Source: PR Newswire