Quantcast

Industry news that matters to you.  Learn more

Research Documents Rapid Detection of Structural Variation in a Human Genome Using BioNano’s Irys System

Reading time: 3 – 4 minutes

BioNano Genomics, Inc., the leader in genome mapping, and BGI, the world’s largest genomics organization, highlight the publication of a peer-reviewed research article and its accompanying data* in GigaScience. This article describes the rapid detection of structural variation in a human genome using the high-throughput, cost-effective genome mapping technology of the Irys® System. Structural variations are known to play an important role in human genetic diversity and disease susceptibility. However, comprehensive, efficient and unbiased discovery of structural variations has previously not been possible through next generation sequencing (NGS) and DNA arrays with their inherent technology limitations.

This study showed that the Irys System was able to detect more than 600 structural variations larger than 1kb in a single human genome. Approximately 30 percent of detected structural variations affected coding regions, responsible for making proteins. Proteins participate in virtually every process within cells, suggesting that these structural variations may have a deep impact on human health. The Irys System also accurately mapped the sequence of a virus that had integrated into the genome. The ability to provide this type of information may help inform how virus sequence integration can lead to diseases such as cancer.

“We found that BioNano’s Irys System helps overcome the technological issues that have severely limited our understanding of the human genome,” said Xun Xu, deputy director at BGI. “In a matter of days and with fewer than three IrysChip®, we were able to collect enough data for de novo assembly of a human genome and perform comprehensive structural variation detection without additional technologies or multiple library preparations. BioNano has since improved throughput of the Irys System enabling enough data for human genome de novo assembly to be collected in one day on a single IrysChip.”

Genome maps built using the Irys System reveal biologically and clinically significant order and orientation of functionally relevant components in complex genomes. This includes genes, promoters, regulatory elements, the length and location of long areas of repeats, as well as viral integration sites.

“The Irys System provides a single, cost-effective technology platform solution to assemble a comprehensive view of a genome and discover and investigate structural variations,” said Han Cao, Ph.D., founder and chief scientific officer of BioNano Genomics. “The Irys System enables de novo assembly of genomes containing complex, highly variable regions and accurate detection of all types of structural variation, both balanced and imbalanced, within complex heterogeneous samples.”

The Irys System has previously been used to map the 4.7-Mb highly variable human major histocompatibility complex (MHC) region and to enable a de novo assembly of a 2.1-Mb region in the highly complex genome of Aegilops tauschii, one of three progenitor genomes that make up today’s wheat.

BGI acquired the Irys System in 2014 to enable comprehensive exploration of structural variation in the human genome and to provide vastly improved assemblies for various organisms that have very complex genomic structure, including those organisms where no reference exists. Together with other available platforms, BGI aims to provide researchers with the most comprehensive information and comprehensive interpretation.

The article is one of the first articles that are part of GigaScience’s series Optical Mapping: New Applications, Advances, andChallenges (http://www.gigasciencejournal.com/series/OpticalMapping), and is available through this link: http://www.gigasciencejournal.com/content/3/1/34.

*The data for this study, as part of the journal’s mission of making published research reproducible and data reusable, are available in the Journal’s linked database, GigaDB, at http://dx.doi.org/10.5524/100097

Source: PR Newswire