Quantcast

Industry news that matters to you.  Learn more

Life Technologies Signs Five-Year Agreement with the FDA

Life Technologies Corporation (NASDAQ: LIFE) recently announced that it has signed a five-year agreement with the Food and Drug Administration (FDA) to accelerate and advance food safety testing of E. coli and Salmonella, two foodborne contaminants commonly associated with outbreaks and/or recalls.

The collaboration consists of three distinctive projects:

  • Life Technologies will design and validate new food safety tests for the detection and identification of foodborne pathogens, with pathogen strains provided by the FDA.
  • Life Technologies will design and validate a complete workflow for food pathogen detection on the Ion PGM™ platform, while optimizing sample preparation methods.
  • The FDA will have the opportunity to evaluate new disruptive technology platforms by Life Technologies for the use in pathogen detection.

Life Technologies will use its bioinformatics resources to independently develop real-time PCR (polymerase chain reaction) assays against unique E. coli and Salmonella targets in collaboration with the FDA. It will then provide the test results for these targets to the FDA for further validation.

The FDA will use Life Technologies’ Ion PGM™ Sequencer to generate whole genome sequence information from defined bacteria, and for strains that will be excluded from detection. Life Technologies’ bioinformatics team will then analyze the genomic information and provide assays or tests to the FDA for further validation and analysis. Whole genome sequences generated under the collaboration will be added to the National Institutes of Health Genbank so they can be accessed by the food safety research community.

“We are excited to be entering this cooperative research and development agreement with the FDA as we have been working alongside them in one capacity or the other for over 10 years,” said Nir Nimrodi, Vice President and General Manager for Food Safety and Animal Health at Life Technologies. “The FDA will call on us, particularly when it comes to developing rapid detection kits. This agreement allows them to have new rapid track and trace products for rapid identification of foodborne contaminants.”

Lastly, the FDA will validate and test Life Technologies’ next-generation sequencing technologies for Salmonella investigations as part of its effort to develop new rapid detection tools that can improve the public health response to future outbreaks.

Life Technologies has a strong history of combating pathogen outbreaks. In 2011, Life Technologies developed a custom assay to accurately detect the highly pathogenic E. coli 0104:H4 bacterium that spread through Europe, killing hundreds of people.

“The assay was developed using samples supplied by scientists at University Hospital Munster, who completed the DNA sequencing and analysis work on the deadly E. coli strain using the Ion PGM™ Sequencer,” said Maneesh Jain, Ion Torrent Vice President of Marketing for Life Technologies. “Now the FDA will validate and test this same technology to understand the molecular relationship within the Salmonella pathogen in the hopes to prevent future outbreaks from occurring.”

The PGM™ offers scientists the simplest and fastest workflow, lowest cost-per-sample, and highest sensitivity for multiple basic and clinical research applications.

Source: Life Technologies

Potential Clue Associated with Aggressive Prostate Cancer Identified by Rutgers Investigators

Prostate cancer is one of the most common forms of cancer in men and the leading cause of cancer deaths in white, African-American and Hispanic men, according to the Centers for Disease Control. Current treatment of prostate cancer targets androgens, hormones which promote the growth and spread of cancer cells. However, it remains unclear why, despite treatment, some prostate cancers progress and may become fatal. Researchers at Robert Wood Johnson Medical School, part of Rutgers, The State University of New Jersey, who are studying the underlying mechanisms that cause invasive tumor growth have identified a key transcription factor, a protein which regulates the flow of information from DNA, that is over-produced in treatment-resistant prostate cancer, as well as the two protein kinases that trigger the process. This finding, published and highlighted on the cover of the July issue of Molecular Cancer Research, a journal of the American Association for Cancer Research (AACR) could be utilized to develop treatments for prostate cancer that is resistant to current therapies.

The research team, led by Joseph Fondell, PhD, associate professor of pharmacology, found that in clinically localized human prostate cancer — cancer that is confined to the prostate and pelvic area — the key transcription factor termed MED1 is overexpressed, meaning that significantly more MED1 is produced than is typical. According to Fondell, the finding potentially could be used as a biomarker in cancer screenings, indicating to oncologists that the prostate cancer has become aggressive. “As MED1 is a known co-activator of androgen receptors, the overexpression of MED1 is thought to facilitate alternative gene expression patterns that drive treatment-resistant cancer cell growth in the prostate,” Fondell said.

“Our study showed for the first time that MED1 expression is elevated in malignant cells of a statistically significant number of patients with clinical prostate cancer and that this overexpression correlates with an increase in cancer cell growth and invasiveness,” said Feng Jin, PhD, a former graduate student in Fondell’s lab and first author on the study. “In addition to accelerated tumor growth, our study showed that overexpression of MED1 may also be involved with inflammation of the prostate.”

Further study of the process using mouse models that mimic human prostate cancer, showed that two protein kinases, ERK and PI3K/AKT, were overactive and responsible for MED1 overproduction, ultimately accelerating the progression and spread of prostate cancer.

“Whereas the current treatment approach for prostate cancer is to prohibit androgen production and signaling, our findings indicate that MED1 could represent a novel target for new therapies that stop the process at the molecular level, before prostate cancer can progress to an advanced stage,” added Fondell, who also is a member of Rutgers Cancer Institute of New Jersey.

Study: ERK and AKT Signaling Drive MED1 Overexpression in Prostate Cancer in Association with Elevated Proliferation and Tumorigenicity [Molecular Cancer Research]

Source: Robert Wood Johnson Medical School

ITN Type 1 Diabetes Study Identifies Subset of Patients with Strong Response to Therapy

Primary results from a new clinical trial show that patients with type 1 diabetes treated with the monoclonal antibody teplizumab (MacroGenics, Inc.) exhibit greater preservation of C-peptide, a biomarker of islet cell function, compared to controls. Further analyses identified a discrete subset of the treatment group that demonstrated especially robust responses (“responders”), suggesting that these patients could be identified prior to treatment. The trial, entitled “Autoimmunity-Blocking Antibody for Tolerance in Recently Diagnosed Type 1 Diabetes” (AbATE), was conducted by the Immune Tolerance Network (ITN). The results are available online and will be published in the November issue of the journal Diabetes.

The AbATE study, led by Kevan Herold, MD (Yale University), tested teplizumab, which targets the CD3 receptor found on T cells, in patients with new-onset type 1 diabetes. CD3 is required for T-cell activation, which can lead to the destruction of insulin-producing beta cells. A previous ITN study with teplizumab showed that a single course of the drug slowed C-peptide decline in new-onset patients for a year, after which the effects waned. The aim of the AbATE study was to test whether C-peptide preservation could be prolonged by administering two courses of teplizumab, one year apart.

In this open-label, Phase II study, 77 new-onset patients (ages 8 to 30 years old) were randomized to receive either teplizumab or a control. Those in the treatment arm received the scheduled treatment consisting of two 14-day courses of teplizumab, one year apart. Both arms received intensive diabetes care from certified diabetes educators and were followed for two years. The primary endpoint compared C-peptide preservation between the two groups.

After two years, the teplizumab-treated group showed significantly greater preservation of C-peptide (75-percent higher responses compared to the control group).

Further analysis revealed that within the treatment arm two groups of patients could be distinguished based on their C-peptide levels: one group, considered “responders” (22/49), showed very little C-peptide decline over the course of the study (only a 6 percent reduction from baseline), while the “non-responders” (27/49) exhibited a similar rate of C-peptide decline as the control group (less than 40-percent reduction from baseline).

Investigators measured various biomarkers and cell types that might distinguish between these two groups. They found that, at trial entry, “responders” had lower hemoglobin A1c levels (a marker of glucose concentration in the blood) and used less insulin at baseline, compared to “non-responders”. Differences in specific T-cell subsets also distinguished between the two groups at baseline, suggesting that immune status might contribute to drug responsiveness. However, further studies will be required to confirm these results.

“This overall approach to identifying characteristics of individuals most likely to respond to therapies shows great promise because the responders in this study experienced a robust and prolonged drug effect,” said Dr. Herold. “This type of response has not been seen in other studies of immune therapies.”

Type 1 diabetes is a disease marked by immune destruction of insulin-producing beta cells in the pancreas. New-onset patients usually have 20 to 40 percent of their normal beta cell mass remaining, which is still capable of producing insulin. Preserving this remaining mass, even temporarily, could improve long-term clinical outcomes.

Immune modulators, like teplizumab, represent a promising means of inducing tolerance; however, no drug has been shown to prevent or reverse disease, and only a few have temporarily delayed disease progression. The ability to identify a subgroup of patients who may be more responsive to therapy could greatly enhance the clinical use of immune modulators and improve outcomes for those patients. Further analyses with specimens collected from the AbATE study are ongoing to understand the mechanism of response.

Source: EurekAlert!

MolecularMD Corp. Obtains License to Commercialize Predictive Diagnostic Based on Actionable Biomarker, DDR2, for Uses in Lung Cancer and Targeted Kinase Therapy

MolecularMD Corp. recently announced that it has entered into a license agreement granting the company exclusive patent rights to cancer diagnosis technology. Specifically, MolecularMD has obtained rights to commercialize patent-pending intellectual property pertaining to DDR2 mutations for diagnostic, prognostic and predictive uses for humans in the area of lung cancer. Such patent rights are jointly-owned by The Broad Institute and Dana-Farber Cancer Institute. The inventors named on the patent are Drs. Matthew Meyerson, Peter Hammerman, and Alexis Ramos.

About DDR2 Mutations in Lung Cancer

Research into understanding the genetic basis of cancer has led to identification of novel biomarkers that have been successfully exploited with targeted therapies. In non-small cell lung cancer (NSCLC), several such targets have been discovered for adenocarcinoma including EGFR, ALK, and MET. Unfortunately, these therapeutic targets are not relevant for squamous cell carcinoma (SCC), which is the second most frequent histological subtype in NSCLC. Recent discoveries identified mutations in the discoidin domain receptor 2 (DDR2) of SCC patient tumors that are oncogenic and also responsive to existing drugs targeting kinase inhibition. DDR2 is a membrane receptor tyrosine kinase involved in cell adhesion, proliferation and migration. In xenograft models, DDR2-mutant tumors regressed under treatment with the tyrosine kinase inhibitor, dasatinib. Remarkably, an SCC patient with no detectable EGFR mutation had a long-term response to the combination of erlotinib plus dasatinib. This patient was found to harbor a DDR2 mutation further suggesting that DDR2 mutations may be clinically relevant. Given the availability of a variety of therapies targeting tyrosine kinases, these findings provide a rationale for designing clinical trials for patients with SCC using existing FDA-approved drugs such as dasatinib, imatinib, nilotinib and ponatinib as well as novel, selective tyrosine kinase inhibitors for DDR2.

MolecularMD is developing DDR2 diagnostic assays, including next-generation sequencing tests, for clinical trials exploring efficacy of targeted therapies and DDR2 clinical utility. MolecularMD provides comprehensive clinical trial support through its CLIA-certified and CAP-accredited Clinical Reference Laboratory. In addition, MolecularMD provides IVD development and manufacturing capability to support companion diagnostic device commercialization. MolecularMD will also support commercialization of DDR2 technology through sublicensing to clinical reference laboratories and diagnostic assay developers and manufacturers.

According to Dr. Greg Cox, MolecularMD’s Director of Licensing, “DDR2 is potentially the first actionable biomarker available for SCC patients, whose treatment options are currently limited to chemotherapy. It’s exciting that these patients may benefit from existing FDA-approved targeted therapies, and we are eager to support clinical trials examining these novel treatment possibilities and enable widespread access to DDR2 diagnostics.”

Big Data From Alzheimer’s Disease Whole Genome Sequencing Will Be Available to Researchers Due to Novel Global Research Database

The Alzheimer’s Association and the Brin Wojcicki Foundation announced recently that massive amounts of new data have been generated by the first “Big Data” project for Alzheimer’s disease. The data will be made freely available to researchers worldwide to quickly advance Alzheimer’s science.

Discussed recently at the Alzheimer’s Association International Conference (AAIC) 2013 in Boston, the project obtained whole genome sequences on the largest cohort of individuals related to a single disease – more than 800 people enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

The genome sequencing data – estimated to be 200 terabytes – will be housed in and available through the Global Alzheimer’s Association Interactive Network (GAAIN), a planned massive network of Alzheimer’s disease research data made available by the world’s foremost Alzheimer’s researchers from their own laboratories, and which also is being publicly announced today at AAIC 2013. GAAIN is funded by an initial $5 million dollar investment by the Alzheimer’s Association, made possible due to the generous support of donors.

“The Alzheimer’s Association is committed to creating open access to research data, and we believe GAAIN will transform how neuroscience data is shared and accessed by scientists throughout the world,” said Maria Carrillo, Ph.D., Alzheimer’s Association vice president of Medical and Scientific Relations. “By fostering a higher level of global data sharing, GAAIN will accelerate investigation and discovery in Alzheimer’s through a system comparable to a search engine like Google or Bing for relevant data.”

“With the addition of more than 800 whole genomes on ADNI subjects that can be linked to the current rich dataset, ADNI data will be even more useful to scientists who are seeking new approaches to treatment and prevention of Alzheimer’s disease,” said Robert C. Green, M.D., M.P.H., of Brigham and Women’s Hospital and Harvard Medical School, who led the ADNI sequencing project. “ADNI is a leader in open data sharing, having provided clinical, imaging and biomarker data to over 4,000 qualified scientists around the world, which has generated over 700 scientific manuscripts.

First, Massive Whole Genome Sequencing Project in Alzheimer’s Disease

Whole genome sequencing determines all six billion letters in an individual’s DNA in one comprehensive analysis. The raw data from the ADNI project is being made available to qualified scientists around the globe to mine for novel targets for risk assessment, new therapies, and much-needed insight into the causes of the fatal brain disease. The new data may enable scientists to better understand how our genes cause and are affected by bodily changes associated with Alzheimer’s disease.

ADNI enrolls people with Alzheimer’s disease, mild cognitive impairment, and normal cognition who have agreed to be studied in great detail over time. The goal is to identify and understand markers of the disease in body fluids, structural changes in the brain, and measures of memory; the hope is to improve early diagnosis and accelerate the discovery of new treatments. ADNI is led by Principal Investigator Michael W. Weiner, M.D., of the University of California San Francisco and the San Francisco VA Medical Center. Dr. Green collaborated on managing the sequencing efforts with Arthur Toga, Ph.D., of UCLA and Andrew J. Saykin, Psy.D., of Indiana University. The actual genome sequencing was performed at Illumina, Inc.

ADNI is a public-private research project led by the National Institutes of Health (NIH) with private sector support through the Foundation for NIH. Launched in 2004, ADNI’s public-private funding consortium includes pharmaceutical companies, science-related businesses, and nonprofit organizations including the Alzheimer’s Association and the Northern California Institute for Research and Education.

The Global Alzheimer’s Association Interactive Network (GAAIN)

Data-sharing has already greatly benefitted scientific disciplines such as genetics, molecular biology, and the physical sciences. Data-sharing in genetics has led to dramatic advances in understanding the risk factors underlying complex diseases. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a compelling example of dozens of geographically-dispersed researchers working together to share their data while making it freely available to others for analysis and publication.

“GAAIN is similar in spirit and goals to other ‘big data’ initiatives that seek to greatly improve the tools and techniques needed to access, organize, and make discoveries from huge volumes of digital data,” Carrillo said. “The advent of cloud computing makes it possible to link databases throughout the world and expand their data processing capability significantly to benefit the research community.”

Carrillo will supervise the development of GAAIN in conjunction with co-principal investigators Art Toga, Ph.D., of the Laboratory of Neuro Imaging (LONI) at the University of Southern California and Giovanni Frisoni, M.D., of the National Center for Alzheimer’s Disease Research and Care and the Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fatebenefratelli Hospital, Italy. Enrique Castro-Leon, Ph.D., who will serve as a consultant, is an enterprise and data center architect for strategic partner Intel Digital Enterprise Group.

GAAIN is built on an international database framework already in use by thousands of scientists and local computational facilities in North America and Europe. The network makes research data available free-of-charge for searching, downloading, and processing across a cloud-based, grid-network infrastructure accessible anywhere through Internet access.

The key to GAAIN’s innovation is its federation of data, which is unprecedented for such a system. GAAIN leadership will invite scientists conducting qualified studies to become partners by permitting GAAIN to link directly to their databases. This will enable researchers to add continually to their data sets and keep all data in GAAIN current and dynamic. It also will enable the scientists to retain control over access to their data, which the Association believes will be important to encouraging participation.

“This is unprecedented and of the utmost importance in brain research, where sometimes thousands of examples are required to observe even the smallest change in the brain,” said Giovanni Frisoni, M.D., neurologist and deputy scientific director at the National Center for Alzheimer’s Disease Research and Care at the IRCCS. He will lead the work of GAAIN in Europe.

“Through GAAIN we envision combining massive amounts of data from multiple sources across many subjects participating in numerous studies,” said Art Toga, Ph.D., professor of neurology at UCLA and director of LONI. “This will provide more statistical power than ever before.”

Source: Alzheimer’s Association