Quantcast

Industry news that matters to you.  Learn more

Breakthrough Case Study Highlights New Biomarker for Cancer and Inflammation

A groundbreaking peer reviewed case report by Dr. Isaac Eliaz, M.D. of Amitabha Medical Clinic, demonstrates for the first time the clinical use of novel biomarker galectin-3 to assess cancer progression and inflammation. The case study titled, “The Role of Galectin-3 as a Marker of Cancer and Inflammation in a Stage IV Ovarian Cancer Patient with Underlying Pro-Inflammatory Comorbidities,” was published in the July 2013 issue of Case Reports in Oncology. This report is the first of its kind to expand the diagnostic and prognostic applications of the galectin-3 blood serum test, introducing an important clinical tool to assess risk and progression of metastatic cancer and inflammatory diseases.

In 2011, the galectin-3 blood test was approved by the U.S. Food and Drug Administration for the screening and prognosis of congestive heart failure and cardiovascular disease. Approval was granted after an extensive body of published data, including long-term population studies, demonstrated the active role of elevated galectin-3 in cardiovascular conditions, fibrosis and early mortality. However, a rapidly expanding field of published galectin-3 research also highlights the significance of this rogue molecule as a novel biomarker that is both an active culprit as well as a byproduct of numerous inflammatory and malignant cellular processes beyond cardiovascular disease.

An expert on galectin-3, Dr. Eliaz applies the data obtained in this case study to shed further light on excess galectin-3’s mechanisms of action, specifically inflammatory response to injury and cancer progression. In this report, Dr. Eliaz presents the first published case documenting the clinical use of galectin-3 to monitor cancer progression and treatment response, as well as inflammatory conditions. These findings point to an expanded clinical model using galectin-3 testing in the diagnostic and prognostic assessment of numerous chronic, inflammatory diseases.

Unlike biomarkers such as C-reactive protein (CRP), which only indicate the presence of inflammation, galactin-3 is shown to play a direct role in initiating disease progression. It is a protein normally present in the body at low concentrations, where it is involved in numerous functions including cell growth and communication. At elevated levels, however, galectin-3 fuels numerous pathologic processes including chronic inflammation and the progression of inflammation to fibrosis; cancer cell adhesion, migration, angiogenesis, and metastasis. Elevated galectin-3 also allows cancer cells to evade immune response. Research demonstrates elevated galectin-3 levels in patients with melanoma, lung, breast, prostate, colorectal, ovarian, and head and neck cancers as well as non-Hodgkin’s lymphoma and others. Galectin-3 levels are also found to be higher in patients with metastatic disease than in patients with localized tumors.

Dr. Eliaz states, “This new case report and significant clinical observation supports the need for further research on the role of galectin-3. The galectin-3 test could well become one of our most important clinical tools in assessing and monitoring a wide range of conditions beyond cardiovascular disease, including metastatic cancer and inflammatory conditions.”

Study: The Role of Galectin-3 as a Marker of Cancer and Inflammation in a Stage IV Ovarian Cancer Patient with Underlying Pro-Inflammatory Comorbidities. [Case Reports in Oncology]

Source: PR Newswire

Breakthrough Case Study Highlights New Biomarker for Cancer and Inflammation

A groundbreaking peer reviewed case report by Dr. Isaac Eliaz, M.D. of Amitabha Medical Clinic, demonstrates for the first time the clinical use of novel biomarker galectin-3 to assess cancer progression and inflammation. The case study titled, “The Role of Galectin-3 as a Marker of Cancer and Inflammation in a Stage IV Ovarian Cancer Patient with Underlying Pro-Inflammatory Comorbidities,” was published in the July 2013 issue of Case Reports in Oncology. This report is the first of its kind to expand the diagnostic and prognostic applications of the galectin-3 blood serum test, introducing an important clinical tool to assess risk and progression of metastatic cancer and inflammatory diseases.

In 2011, the galectin-3 blood test was approved by the U.S. Food and Drug Administration for the screening and prognosis of congestive heart failure and cardiovascular disease. Approval was granted after an extensive body of published data, including long-term population studies, demonstrated the active role of elevated galectin-3 in cardiovascular conditions, fibrosis and early mortality. However, a rapidly expanding field of published galectin-3 research also highlights the significance of this rogue molecule as a novel biomarker that is both an active culprit as well as a byproduct of numerous inflammatory and malignant cellular processes beyond cardiovascular disease.

An expert on galectin-3, Dr. Eliaz applies the data obtained in this case study to shed further light on excess galectin-3’s mechanisms of action, specifically inflammatory response to injury and cancer progression. In this report, Dr. Eliaz presents the first published case documenting the clinical use of galectin-3 to monitor cancer progression and treatment response, as well as inflammatory conditions. These findings point to an expanded clinical model using galectin-3 testing in the diagnostic and prognostic assessment of numerous chronic, inflammatory diseases.

Unlike biomarkers such as C-reactive protein (CRP), which only indicate the presence of inflammation, galactin-3 is shown to play a direct role in initiating disease progression. It is a protein normally present in the body at low concentrations, where it is involved in numerous functions including cell growth and communication. At elevated levels, however, galectin-3 fuels numerous pathologic processes including chronic inflammation and the progression of inflammation to fibrosis; cancer cell adhesion, migration, angiogenesis, and metastasis. Elevated galectin-3 also allows cancer cells to evade immune response. Research demonstrates elevated galectin-3 levels in patients with melanoma, lung, breast, prostate, colorectal, ovarian, and head and neck cancers as well as non-Hodgkin’s lymphoma and others. Galectin-3 levels are also found to be higher in patients with metastatic disease than in patients with localized tumors.

Dr. Eliaz states, “This new case report and significant clinical observation supports the need for further research on the role of galectin-3. The galectin-3 test could well become one of our most important clinical tools in assessing and monitoring a wide range of conditions beyond cardiovascular disease, including metastatic cancer and inflammatory conditions.”

Study: The Role of Galectin-3 as a Marker of Cancer and Inflammation in a Stage IV Ovarian Cancer Patient with Underlying Pro-Inflammatory Comorbidities [Case Reports in Oncology]

Source: PR Newswire

Creighton Awarded $1.44 Million for Bench-to-Bedside Asthma Research

What started as basic cancer research at Creighton University has yielded promising results for diagnosing and treating asthma – and the National Institutes of Health (NIH) agrees, investing nearly $1.5 million in Creighton to find out more.

In a previous prostate cancer study, Yaping Tu, Ph.D., a cancer biologist and associate professor of pharmacology at Creighton University School of Medicine, studied a mouse model that was missing a specific gene, called RGS2; he believed the deleted gene would lead to prostate cancer in the animals. Though the tumors failed to develop, Tu noticed the mice had trouble breathing and were less active, similar to asthma patients. With the help of Creighton’s renowned allergy and asthma researcher Thomas Casale, M.D., professor of medicine and microbiology and immunology and Chief of the Division of Allergy and Immunology, Tu soon determined the animals suffered from airway hyperresponsiveness, or a twitchiness of the airways – a cardinal feature of asthma.

“This finding piqued our interest and made us wonder if there was a connection to human patients with asthma,” says Tu. “In a preliminary study funded by the American Asthma Foundation, we were able to confirm that RGS2 is downregulated in a high percentage of patients with asthma, confirming the possibility that this may be a target for a novel gene therapy in asthma patients.”
Now with a $1.44 million, four-year NIH grant, Tu and collaborators Casale and Peter Abel, Ph.D., professor of pharmacology at Creighton University School of Medicine, will take a bench-to-bedside approach to explore how the gene works in the development of airway hyperresponsiveness and whether it can be used as a diagnostic marker for asthma. Finally, the collaborators will work to develop a therapeutic approach to restore gene function, with the hope of one day applying the research to human trials.

Asthma currently affects more than 25 million Americans. There is not one cause; different patients have different triggers. The one shared trait, however, is airway hypperresponsiveness possibly related to the change to RGS2.

“Our current treatment options are similar to a lock-and-key,” Casale explains. “Each drug on the market is the key to unlock and treat a different symptom or pathway important in causing asthma – and we still haven’t found all of the keys. We still have a lot of work to do, but our findings suggest that therapy targeting RGS2 gene expression might just be the master key to managing a critical component of asthma as a whole.”

Research reported in this press release was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health under award number R01HL116849. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Source: Creighton University

Biomarker Predicts Heart Attack Risk Based on Response to Aspirin Therapy

Aspirin has been widely used for more than 50 years as a common, inexpensive blood thinner for patients with heart disease and stroke, but doctors have little understanding of how it works and why some people benefit and others don’t.

Now researchers at Duke Medicine have solved some of the mysteries related to the use of this century-old drug, and developed a blood-based test of gene activity that has been shown to accurately identify who will respond to the therapy.

The new gene expression profile not only measures the effectiveness of aspirin, but also serves as a strong predictor of patients who are at risk for heart attack, according to a study appearing July 3, 2013, in the online edition of the Journal of the American College of Cardiology.

“We recognized the concept of aspirin resistance among a population of patients who have cardiac events or stroke,” said senior author Geoffrey S. Ginsburg, M.D., PhD, director of genomic medicine at Duke’s Institute for Genome Sciences & Policy and executive director of the Center for Personalized Medicine. “We give the same dose to all patients, but maybe some patients need a larger dose of aspirin, or maybe they need to try a different therapy entirely. We need better tools to monitor patients and adjust their care accordingly, and the findings from our study move us in that direction.”

The Duke researchers enlisted three groups of participants – two of healthy volunteers and one comprised of patients with heart disease seen in outpatient cardiology practices.

The healthy volunteers were given a dosage of 325 mg of aspirin daily for up to a month; the heart disease patients had been prescribed a low dose of aspirin as part of their treatment. Blood was then analyzed for the impact of aspirin on RNA expression and the function of platelets, which are the blood cells involved in clotting.

The RNA microarray profiling after aspirin administration revealed a set of 60 co-expressed genes that the researchers call the “aspirin response signature,” which consistently correlated with an insufficient platelet response to aspirin therapy among the healthy subjects as well as the heart disease patients.

The researchers also examined the aspirin response signature in another group of patients who had undergone cardiac catheterizations. They found the signature was also effective in identifying those patients who eventually suffered a heart attack or died.

“The aspirin response signature can determine who is at risk for heart attack and death,” said Deepak Voora, M.D., assistant professor of medicine at Duke and lead author of the study. “There is something about the biology of platelets that determines how well we respond to aspirin and we can now capture that with a genomic signature in blood.”

Ginsburg said the research is progressing to recreate the findings in other populations, and to develop a standardized testing system that could one day move the analysis into daily practice.

“Nearly 60 million people take aspirin regularly to reduce their chances of heart attack and death, but it doesn’t work for everyone,” said Rochelle Long, Ph.D., of the National Institutes of Health’s National Institute of General Medical Sciences, which partly supported the study. “By monitoring gene activity patterns these investigators uncovered a ‘signature’ linked to inadequate responsiveness. This work may eventually lead to a simple blood test to identify those who do not benefit from aspirin, enabling them to seek other therapeutic options.”

In addition to Ginsburg and Voora, study authors include Derek Cyr; Joseph Lucas; Jen-Tsan Chi; Jennifer Dungan; Timothy A. McCaffrey; Richard Katz; L. Kristin Newby; William E. Kraus; Richard C. Becker; and Thomas L. Ortel.

The study received funding from the Duke Institute for Genome Sciences & Policy; the National Institutes of Health (T32HL007101 to DV); the National Center for Research Resources (UL1RR024128); the National Institutes of General Medical Sciences (RC1GM091083); the Centers for Disease Control and Prevention (5U01DD000014); and the David H. Murdock Research Institute.

Study: Aspirin Exposure Reveals Novel Genes Associated with Platelet Function and Cardiovascular Events

Source: Duke Medicine

EMD Serono Establishes Immuno-Oncology Research and Early Development Platform to Advance Innovation in Cancer Therapies

EMD Serono, Inc., a subsidiary of Merck KGaA, Darmstadt, Germany, recently announced its commitment to the field of cancer immunotherapy by creating a fully dedicated immuno-oncology innovation platform integrating research, early development and biomarker strategies. In addition to the company’s existing oncology platform, this new immuno-oncology platform will focus on developing therapies that leverage the immune system’s natural ability to fight tumors, and work in combination with existing and future therapies.

“We are pleased to announce our commitment to immuno-oncology, recognizing that the complexity of cancer requires diverse approaches that will enable alternative therapeutic interventions,” said Bernhard Kirschbaum, Head of Global Research and Early Development at Merck Serono, a division of Merck KGaA, Darmstadt, Germany. “In order to spur research and early development in this specialized area, we have created an innovative environment where researchers and clinicians work side-by-side to advance potential new cancer immunotherapies.”

The new immuno-oncology platform includes three innovation clusters, each of which is focused on discovery research and the advancement of molecules into the clinic through proof of confidence:

  • Therapeutic cancer vaccines: targeting tumor antigens to elicit a tumor-specific immune response
  • Cancer stem cells: targeting cancer stem cells to prevent or reduce tumor formation and inhibit metastases
  • Immunotolerance: eliminating or circumventing inhibitory mechanisms in the immune system that prevent cancer cells from being recognized and attacked by the body

To ensure a broad immuno-oncology research and early development platform, EMD Serono has assembled an in-house team of preeminent researchers and clinicians who will focus resources and technologies to build a portfolio of investigational immunotherapies, while collaborating with premier academia, research and industry organizations to complement internal capabilities.

The current immuno-oncology portfolio comprises therapeutic candidates in early clinical development and a robust pipeline of pre-clinical molecules. Leading therapeutic concepts in the clinic are:

  • A monoclonal antibody targeting PD-L1 (programmed cell death ligand) expressed by various tumors, currently in Phase I in solid tumors
  • NHS-IL12, a cancer immunotherapy targeting IL-12 to the necrotic regions of tumors, sponsored by the United States National Cancer Institute (NCI), currently in Phase I in solid tumors
  • NHS-IL2, targeting IL-2 to the necrotic regions of tumors, completed Phase I and currently preparing for Phase II in solid tumors

“Our goal is to develop leading immunotherapies that work in combination with other therapeutic modalities, understanding that attacking multiple cancer targets simultaneously increases the possibility of therapeutic success,” said Helen Sabzevari, Head of Immuno-Oncology, Global Research and Early Development at Merck Serono, a division of Merck KGaA, Darmstadt, Germany. “We are committed to delivering on the promise of immuno-oncology by combining creative thinking with strong research and clinical excellence, and, more importantly, by keeping patient needs at the heart of our efforts.”

Source: EMD Serono