Quantcast

Industry news that matters to you.  Learn more

As Michael J. Fox Returns to Primetime, His Research Foundation Urgently Pursues the Cure for Parkinson’s

Last month, Michael J. Fox returned to television as the star of his own sitcom after more than two decades living with Parkinson’s disease. Fox’s decision to return to primetime has injected Parkinson’s into the national conversation — a conversation already transformed by The Michael J. Fox Foundation for Parkinson’s Research (MJFF), which the actor launched in 2000 with the exclusive goal of funding research to speed a cure for the disease.

University of Cambridge, Genomics England Ltd., and Illumina Collaborate to Sequence 10,000 Whole Human Genomes for National Health Service Patients

University of Cambridge, Genomics England Ltd., and Illumina, Inc. (NASDAQ:ILMN) recently announced the start of a three-year project that will sequence 10,000 whole genomes of children and adults with rare genetic diseases. The project represents a pilot for Genomics England Ltd., which will provide 2,000 samples, and marks the beginning of the national endeavor to sequence 100,000 genomes in the UK National Health Service (NHS), announced recently by the Prime Minister, David Cameron.

Ruggles Family Foundation and Mr. and Mrs. Rudy L. Ruggles, Jr. Make $1.25M Donation to J. Craig Venter Institute for New Study to Identify and Elucidate Healthy Aging Biomarkers

The J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization, recently announced that the Ruggles Family Foundation and Mr. and Mrs. Rudy L. Ruggles, Jr. have made a $1.25 million donation to JCVI to identify and study biomarkers associated with healthy aging. As part of the four year grant, JCVI will collaborate with the Western Connecticut Health Network (WCHN), located in Danbury, CT.

The study, conducted by a team of scientists and clinicians from JCVI and WCHN, will focus on two groups of elderly individuals aged 65 to 85 years by correlating genetics with a variety of human genomic, gut microbiome and other “omics” profiles and integrating these data with the individuals’ health record. One group will consist of healthy individuals, and the other will have individuals with a variety of diagnosed health conditions. The team will then compare the microbiome and molecular profiles of the healthy aging group with those of the non-healthy aging group to identify biomarker candidates. The investigators hope that in the future these data can be used to develop cost-effective, clinically relevant tests.

“As traditional modes of funding for science become less and less plentiful, the need for informed and supportive philanthropic donors is more important than ever. We are grateful for the support of Rudy and Sara and the Ruggles Family Foundation as this will enable us to better understand what healthy aging looks like at the genomic level,” said J. Craig Venter, Ph.D., JCVI Founder and CEO.

“The time is right for pursuing the complex question of healthy aging given the rapid advances in analytical technologies and the expanding knowledge of the human genome and microbiome and their interactions. JCVI’s capabilities in this realm are unparalleled, and I am confident that this ground breaking study will expand materially the horizons of this area of fundamental understanding,” said Rudy Ruggles, a physicist and Adjunct Professor at JCVI, who is a healthy 74 years old and a participant in this study. He is also Chairman of the Research Advisory Council of WCHN’s Biomedical Research Institute.

According to a United Nations report, in 1950 there were 205 million people worldwide aged 60 or older. By 2000 there were 606 million aged 60 or older, and they project that by 2050 this figure will reach nearly 2 billion people who are 60 or older. Understanding the elderly patient and figuring out modes of intervention to better prevent and treat disease associated with aging will continue to be an important area of research.

In addition to more comprehensively studied human genetic factors, other areas of human health and biology that influence and define healthy aging in humans are emerging. For example, a healthy microbiome (the full complement of microbes that live on and in the human body) interacts with the human immune system establishing protective activities when necessary. Low-grade chronic inflammation in humans is a risk factor for the development of more serious diseases that reduce life spans. New tools and technologies developed since the first sequencing of the human and other genomes are now allowing researchers to explore the human body in more detail than ever before, including identifying biological signatures (biomarkers) indicative and even predictive of healthy aging.

According to JCVI President Karen Nelson, Ph.D., “JCVI’s extensive knowledge in human genomics, comparative genomics and the human microbiome, coupled with the clinical expertise of WCHN, should result in new insights into healthy aging. We are excited to add this new study to our repertoire of ongoing human microbiome studies as it will enhance our knowledge in this important area of research.”

For more information on how to support the genomics research programs at JCVI, contact Katie Collins, 858-200-1847.

Source: The J. Craig Venter Institute

New Biomarker Could Reveal Alzheimer’s Disease Years Before Onset

A study published recently reported the identification of what may be the earliest known biomarker associated with the risk of developing Alzheimer’s disease (AD). The results suggest that this novel potential biomarker is present in cerebral spinal fluid (CSF) at least a decade before signs of dementia manifest.

“If our initial findings can be replicated by other laboratories, the results will change the way we currently think about the causes of Alzheimer’s disease,” said Dr. Ramon Trullas, research professor at the CSIC Institute of Biomedical Research of Barcelona and lead author of the study that was published in Annals of Neurology. “This discovery may enable us to search for more effective treatments that can be administered during the preclinical stage.”

Difficult Diagnosis

Alzheimer’s disease affects more than five million Americans and is the sixth leading cause of death in the United States. At present, the only way to accurately diagnose the disease is by post-mortem neuropathological analysis. The relationship of currently known biomarkers with the cause of the disease is unclear, making it nearly impossible to diagnose preclinical stages of the disease with any real certainty.

The CSIC researchers demonstrated that a decrease in the content of mitochondrial DNA (mtDNA) in CSF may be a preclinical indicator for Alzheimer’s disease; furthermore, there may be a directly causative relationship. The hypothesis is that decreased mtDNA levels in CSF reflect the diminished ability of mitochondria to power the brain’s neurons, triggering their death. The decrease in the concentration of mtDNA precedes the appearance of well-known biochemical Alzheimer’s biomarkers (the Aβ1-42, t-tau, and p-tau proteins), suggesting that the pathophysiological process of Alzheimer’s disease starts earlier than previously thought and that mtDNA depletion may be one of the earliest predictors for the disease.

In addition to enabling an investigation of the potential causal relationship of mtDNA and Alzheimer’s progression, the use of mtDNA as an index of preclinical Alzheimer’s disease provides an important advantage over previous biochemical markers: the detection of this novel nucleic acid biomarker is unhampered by the technical difficulties associated with protein detection. mtDNA can be readily quantified by real-time quantitative PCR (qPCR) or droplet digital PCR (ddPCR).

Quantitation of mtDNA

Prior to this study, researchers had not reported that circulating cell-free mtDNA could be detected in human CSF. But with this study, Dr. Trullas’ team was able to both detect and reproducibly quantitate mtDNA using qPCR, carefully optimized by adhering to the MIQE guidelines.

To validate their qPCR findings, Dr. Trullas’ team used Bio-Rad Laboratories’ QX100™ Droplet Digital™ PCR system. Unlike qPCR assays, the QX100 system provides an absolute quantification of target DNA molecules without the need for a standard curve. In addition, an important factor for their CSF analysis was that the Droplet Digital PCR system did not require sample purification to remove PCR inhibitors, as is necessary for qPCR assays.

“Droplet Digital PCR allowed us to validate our initial qPCR measurements because it provides absolute quantitation at the single-molecule level without relying on a standard curve,” said Dr. Trullas. “As the technology becomes more widely adopted, we anticipate that Droplet Digital PCR will be the future of detecting mtDNA in cerebral spinal fluid.”

Dr. Trullas hopes that other laboratories and hospitals will successfully replicate his group’s research results, confirming that reduced mtDNA levels should be investigated as a possible cause of Alzheimer’s disease. By finding a way to block this degeneration, clinicians may be able to diagnose and treat Alzheimer’s disease before symptoms appear.

Study: Low CSF concentration of mitochondrial DNA in preclinical Alzheimer’s disease [Annals of Neurology]

Source: Bio-Rad

SAP and Technical University Munich Decode Human Proteome and Make Data Available for Biomedical Research

SAP AG (NYSE: SAP) and Technical University Munich (TUM) recently announced ProteomicsDB, a new offering based on the SAP HANA® platform that stores protein and peptide identifications from mass spectrometry-based experiments. The proteomic data assembled in the new offering resulted in the identification of proteins mapping to over 18,000 human genes. This represents 90 percent coverage of the human proteome. Data stored and analyzed within ProteomicsDB can be used in basic and biomedical research for discovering therapeutic targets and developing new drugs as well as enhanced diagnosis methods.

As personalized medicine is on the rise, the healthcare field is discovering the opportunities of big data analysis. The result of a joint project between the TUM Chair of Proteomics and Bioanalytics, SAP and the SAP Innovation Center, ProteomicsDB is a major step forward in human proteomics. It currently contains more than 11,000 datasets from human cancer cell lines, tissues and body fluids and enables real-time analysis of this highly dimensional data and creates instant value by allowing to test analytical hypothesis.

ProteomicsDB is based on the SAP HANA for rapid data mining and visualization. It has been built to enable public sharing of mass spectrometry-based proteomic datasets as well as to allow users to access and review data prior to publication. The database is backed with 50 TB of storage, 2 TB RAM and 160 processing units. A direct interface to the programming languages L, C++ and R allows more flexible calculations than are possible with standard SQL. The Web interface is built on a JavaScript framework for HTML5 and optimized for Google Chrome but also available under Internet Explorer and Mozilla Firefox. An easy-to-use and fast Web interface allows users to browse and upload data to the repository as well as browsing the human proteome, including protein level information such as protein function and expression.

ProteomicsDB will be available free of charge. The database will be a valuable asset for researchers in the field of life sciences as well as for the pharmaceutical and biotechnology industry. Insights from analyzing the inherent datasets can be used in biomedical research and for example in developing new drugs that operate in a more targeted way without adversely influencing other cellular processes, helping to reduce side effects.

“The vast amounts of molecular data generated in biomedical research increasingly challenge the ability of scientists to see ‘the forest for the trees,” said Prof. Dr. Bernhard Kuster of TUM. “ProteomicsDB is a significant step ahead in our research aiming at a better understanding of human disease and more informed future treatments. The software helps us and others to store, integrate and analyze experimental data in real time, allowing us to study more complex biological systems at greater depth than previously possible.”

Source: SAP